Question 7: Find dy/dx : sin2 y + cos xy = π
Class 12 - Math - Continuity and Differentiability
Answers
Answered by
16
Differentiation of implicit functions
××××××××××××××
formula used :-
d/dx(cosx) = - sinx
d/dx(sinx) = cosx
××××××××××××××
formula used :-
d/dx(cosx) = - sinx
d/dx(sinx) = cosx
Attachments:
Answered by
3
★ DIFFERENTIATION ★
dy/dx of Sin 2y + Cos xy = π
2Sinx ( Cos xy dy/dx ) - Sinxy ( y + x dy/dx ) = 0
2Siny Cosy dy/dx = Sin xy ( y + x dy/ )
Sin 2y dy/dx = ySinxy + x Sin xy dy/dx
Hence , dy/dx = ySinxy / Sin2y - xSinxy
The same value of dy/dx Siny and dy/dx Cos y will be obtained if using logs on both the sides
★✩★✩★✩★✩★✩★✩★✩★✩★✩★✩★
dy/dx of Sin 2y + Cos xy = π
2Sinx ( Cos xy dy/dx ) - Sinxy ( y + x dy/dx ) = 0
2Siny Cosy dy/dx = Sin xy ( y + x dy/ )
Sin 2y dy/dx = ySinxy + x Sin xy dy/dx
Hence , dy/dx = ySinxy / Sin2y - xSinxy
The same value of dy/dx Siny and dy/dx Cos y will be obtained if using logs on both the sides
★✩★✩★✩★✩★✩★✩★✩★✩★✩★✩★
Similar questions