Question 8:Find dy/dx : sin2 x + cos2 y = 1
Class 12 - Math - Continuity and Differentiability
Answers
Answered by
2
Differentiation of implicit functions
×××××××××××××××
Sin2x + cos2y= 1
differentiating w.r.x
2sin2x -2sin2y (dy/dx) = 0 { d/dx(sinx) = cosx
d/dx(cosx) = -sinx
2sin2x = 2sin2y (dy/dx)
dy/dx = sin2x/sin2y
×××××××××××××××
Sin2x + cos2y= 1
differentiating w.r.x
2sin2x -2sin2y (dy/dx) = 0 { d/dx(sinx) = cosx
d/dx(cosx) = -sinx
2sin2x = 2sin2y (dy/dx)
dy/dx = sin2x/sin2y
Answered by
2
★ DIFFERENTIATION ★
Given function :
Sin 2x + Cos 2y = 1
dy( Sin 2x ) /dy = 2 Cos 2x
dy( Cos 2y ) / dx = -2 Sin 2y( dy/dx )
2 Cos x - 2 Sin2y dy/dx = 0
2 Cos2x = 2 Sin 2y dy/dx
dy/dx = 2 Cos 2x / 2sin 2y
Hence , dy/ dx = Cos 2x / Sin 2y
★✩★✩★✩★✩★✩★✩★✩★✩★✩★✩★
Given function :
Sin 2x + Cos 2y = 1
dy( Sin 2x ) /dy = 2 Cos 2x
dy( Cos 2y ) / dx = -2 Sin 2y( dy/dx )
2 Cos x - 2 Sin2y dy/dx = 0
2 Cos2x = 2 Sin 2y dy/dx
dy/dx = 2 Cos 2x / 2sin 2y
Hence , dy/ dx = Cos 2x / Sin 2y
★✩★✩★✩★✩★✩★✩★✩★✩★✩★✩★
Similar questions