Physics, asked by Anonymous, 1 year ago

Question 9. 1. A steel wire of length 4.7 m and cross-sectional area 3.0 x 10-5 m2stretches by the same amount as a copper wire of length 3.5 m and cross-sectional area of 4.0 x 10-5 m2 under a given load. What is the ratio of the Young’s modulus of steel to that of copper?​

Answers

Answered by kameena1
2

Answer:-

Length of the steel wire, L1 = 4.7 m

Area of cross-section of the steel wire, A1 = 3.0 × 10–5 m2

Length of the copper wire, L2 = 3.5 m

Area of cross-section of the copper wire, A2 = 4.0 × 10–5 m2

Change in length = ΔL1 = ΔL2 = ΔL

Force applied in both the cases = F

Young’s modulus of the steel wire:

Y1 = (F1 / A1) (L1 / ΔL1)

= (F / 3 X 10-5) (4.7 / ΔL) ….(i)

Young’s modulus of the copper wire:

Y2 = (F2 / A2) (L2 / ΔL2)

= (F / 4 × 10-5) (3.5 / ΔL) ….(ii)

Dividing (i) by (ii), we get:

Y1 / Y2 = (4.7 × 4 × 10-5) / (3 × 10-5 × 3.5)

= 1.79 : 1

The ratio of Young’s modulus of steel to that of copper is 1.79 : 1.

Answered by Anonymous
0

Length of the steel wire, L1 = 4.7 m

Area of cross-section of the steel wire, A1 = 3.0 × 10–5 m2

Length of the copper wire, L2 = 3.5 m

Area of cross-section of the copper wire, A2 = 4.0 × 10–5 m2

Change in length = ΔL1 = ΔL2 = ΔL

Force applied in both the cases = F

Young’s modulus of the steel wire:

Y1 = (F1 / A1) (L1 / ΔL1)

= (F / 3 X 10-5) (4.7 / ΔL) ….(i)

Young’s modulus of the copper wire:

Y2 = (F2 / A2) (L2 / ΔL2)

= (F / 4 × 10-5) (3.5 / ΔL) ….(ii)

Dividing (i) by (ii), we get:

Y1 / Y2 = (4.7 × 4 × 10-5) / (3 × 10-5 × 3.5)

= 1.79 : 1

The ratio of Young’s modulus of steel to that of copper is 1.79 : 1.

Similar questions