Math, asked by 850underhill, 9 months ago

Question 9(Multiple Choice Worth 1 points) (08.05 MC) Use the functions f(x) and g(x) to determine which function has the smallest zero and provide its coordinates. f(x) = 2x2 − 14x + 20 x g(x) 18 −17 19 0 20 19 21 40 22 63 f(x); (2, 0) f(x); (−5, 0) g(x); (19, 0) g(x); (−17, 0)

Answers

Answered by AditiHegde
3

Given:

f(x) = 2x2 − 14x + 20 x g(x) 18 −17 19 0 20 19 21 40 22 63 f(x); (2, 0) f(x); (−5, 0) g(x); (19, 0) g(x); (−17, 0)

To find:

Use the functions f(x) and g(x) to determine which function has the smallest zero and provide its coordinates.

Solution:

From given, we have,

x        g(x)    difference of g(x)      difference  

18    −17

19       0         0 - (-17) = 17                          

20     19        19  - 0 = 19              19 - 17 = 2

21     40        40 - 19 =21              21 - 19 = 2

22     63        63 - 40 =23              23 - 21 = 2

 

Thus g(x) is a quadratic function and the regression is given as,  

g(x) = x^2 - 20x + 19  

The zeros of g(x) are given by,

x = ±√[(-20)² - 4(1)(19)]/2(1)

x =  ±9

The  coordinates of zeros are (-9, 0) and (9, 0)

f(x) = 2x^2 − 14x + 20

The zeros of f(x) are given by,

x = ±√[(-14)² - 4(2)(20)]/2(2)

x = ± 1.5

The  coordinates of zeros are (-1.5, 0) and (1.5, 0)

The smallest zero is (-1.5, 0) and it corresponds to f(x).

Answered by riancoons43
3

Answer:

c.

Step-by-step explanation:

Similar questions