Math, asked by Anonymous, 9 days ago

Question
Find The Area Of A ∆ Triangle Two sides Of Which Are 18cm And 10Cm And The Perimeter Is 42Cm?

{\pink}{\rule}{1cm}{0cm}}

Answers

Answered by Anonymous
19

Step-by-step explanation:

Given

Find The Area Of A ∆ Triangle Two sides Of Which Are 18cm And 10Cm And The Perimeter Is 42Cm?

To Find

\bold { \rule{666cm}{0.1cm}}

  • Area Of A Triangle?

\bold { \rule{666cm}{0.1cm}}

Solution

{ \qquad { \sf \pink{\longmapsto \: Let A=18Cm}}}

{ \qquad { \sf \red{\longmapsto \:B=10Cm}}}

{ \qquad { \sf \blue{\longmapsto \: Let \: Perimeter=42Cm}}}

So,

{ \qquad { \sf \purple{\longmapsto \: a + b + c=42Cm}}}

{ \qquad { \sf {\longmapsto \:18 + 10 + c = 42}}}

{ \qquad { \sf {\longmapsto \: = 28 + c = 42}}}

{ \qquad { \sf {\longmapsto \:  = c =  \sf \pink{42 - 28}}}}

{ \qquad { \sf {\longmapsto \:c =  \sf \red{14cm} }}}

We Know,

\large{\purple{\bigstar}} \: \</u></strong><strong><u>:</u></strong><strong><u>{\underline{\boxed{\pink{\sf{S =\sf\green{\frac{A+B+C}{2}}  }}}}}</u></strong><strong><u>

~Putting Terms According To It

{ \qquad { \sf \blue {\longmapsto \: S=  \sf \red{  \frac{18 +  \sf \pink{10} +  \sf \green{14}}{ \sf \purple{2}} } }}}

\qquad\longrightarrow\quad\sf \dfrac{\cancel{ \sf \green{42}}}{\cancel{ \sf \red{2}}} \sf \blue{ = 21}

We Know,

\bold { \rule{666cm}{0.1cm}}

 \sf \blue{Area \:  of  ∆= }\large{\pink{\bigstar}} \: \</u></strong><strong><u>:</u></strong><strong><u>{\underline{\boxed{\green{\sf{  \sqrt{s(s - a)(s - b</u></strong><strong><u>)</u></strong><strong><u>(s-c)} }}}}}

 \blue \bigstar{ \qquad { \sf {\longmapsto \sf \pink{ = } \sf \green{ \sqrt{21(21 - 18)(21 - 10)(21 - 14)} }}}}

{ \qquad { \sf \red {\longmapsto \:  \sf \green{ = }\:   \sf \pink{ \sqrt{21 \times 3 \times 11  \times 7} }\:  \: }}}

{ \qquad { \sf \red {\longmapsto  =  \sf \pink{ 21} \sf \green{\sqrt[]{11cm {}^{2} } }}}}

Therefore,

\bold { \rule{666cm}{0.1cm}}

Area Of Triangle={ \qquad { \sf \red {\longmapsto  =  \sf \pink{ 21} \sf \green{\sqrt[]{11cm {}^{2} } }}}}

\bold { \rule{666cm}{0.1cm}}

Visit More Learn More :

https://brainly.in/question/35732658

More Information:

{\longmapsto{\qquad{\sf \blue{  Perimeter{\small_{(Rectangle)}} =  \sf \pink{Length +Breadth}  }}}}

\large{\blue{\bigstar}} \: \: {\underline{\boxed{\blue{\sf{ Area{\small_{(Rectangle)}}  \sf \pink{= Length \times Breadth }}}}}} \: \: {\blue{\bigstar}}★

Answered by OoAryanKingoO78
7

Question:-

\\\\

Find The Area Of A ∆ Triangle Two sides Of Which Are 18cm And 10Cm And The Perimeter Is 42Cm?

\\

\color{cyan}{\rule{45pt}{7pt}}\color{cyan}{\rule{45pt}{7pt}}\color{cyan}{\rule{45pt}{7pt}}\color{cyan}{\rule{45pt}{7pt}}

\\

Answer:-

\\

\large{\underbrace{\leadsto{\boxed{\sf\color{blue}{21\sqrt{11}cm^2}}}}}

\\

\tt{\underline{Step-by-step \: explanation}}

\\

As per the data given in the question, we have to find the area of the triangle for the two sides.

\\

The sides of triangle given: a = 18 cm, b = 10 cm

Perimeter is 42 cm

\\

As we know that,

\\

The perimeter of the triangle => (a + b + c)

=> 42 = 18 + 10 + c

=> 42 = 28 + c

=> c = 42 - 28

=> c = 14 cm

\\\\

So, Semi Perimeter

\\

\rm{s = (a + b + c)}

=> \sf{\dfrac{42}{2} = 21 \:cm}

\\

Now, by using Heron's Formula

\\

Area of triangle = \sqrt{s \:(s - a)(s - b)(s - c)}

\sf :\implies{\sqrt{21 \: (21 - 18)(21 - 10)(21 - 14)}}

\sf :\implies{21 × 3 × 11 × 7}

\dashrightarrow{\boxed{\bf\color{magenta}{21\sqrt{11}cm^{2}}}}

\\

\color{cyan}{\rule{45pt}{7pt}}\color{cyan}{\rule{45pt}{7pt}}\color{cyan}{\rule{45pt}{7pt}}\color{cyan}{\rule{45pt}{7pt}}

\\

Similar questions