Math, asked by Anonymous, 1 month ago

Question:-
Find the value of k, if x - 1 is a factor of p(x) of the question below:-
i) p(x) = kx² - \sqrt{2x} + 1

Note:-
▪️Grade - 9
▪️Chapter - Polynomials
✅Quality answer needed
✅Step - by - step explanation required ( must )
✗No spam please..​​

Answers

Answered by Glorious31
127

Answer:

Finding g(x)

If ,

x-1 = 0

x = 0 +1                        (transposing 1)

x = 1

p(x) = kx² -  + 1

Substituting the value of x as (-1)

p(1) = k(-1)² -  \sqrt{2} x (1)+ 1

p(1) = k -   \sqrt{2} +1

k=  \sqrt{2} -1          (transposing k)

We can leave the answer as   \sqrt{2} -1 without considering the values without substitution.. 

Verification :

( \sqrt{2}- 1) x² - ( \sqrt{2x}+1) = 0

( \sqrt{2}- 1) (1) -  ( \sqrt{2x}+1)  = 0

( \sqrt{2}- 1) - ( \sqrt{2x}+1)  = 0

0 = 0

LHS = RHS


amansharma264: Excellent
Answered by BrainlyRish
92

Given that , x - 1 is a factor of p(x) of the question below ; (i) p(x) = kx² - \sqrt{2x} + 1 .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's say the factor x - 1 be g(x) .

\qquad \therefore \sf \:g(x) \: =\: x \:-\: 1 \:=\: 0 \: \\\\

\qquad \dashrightarrow \sf \:g(x) \: =\: x \:-\: 1 \:=\: 0 \: \\\\

\qquad \dashrightarrow \sf \:g(x) \: =\: x \: \:=\: 1  \: \\\\

\qquad \dashrightarrow \underline {\boxed {\pmb{\frak{\pink{\:g(x) \: =\:x \:=\: 1 \:}}}}} \\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀¤ Finding Value of k :

\qquad \dashrightarrow \sf kx^2 \:-\:\sqrt{2}x \: + 1 \: \\\\

⠀⠀⠀⠀⠀Given that ,

  • x - 1 is a factor of p(x) of the question below ; (i) p(x) = kx² - \sqrt{2x} + 1 .

As , We know that ,

\qquad \dag\:\:\bigg\lgroup \sf{ \:g(x) \: =\:x \:=\: 1 \: }\bigg\rgroup \\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: \: Value \:of \: x \::}}\\

\qquad \dashrightarrow \sf kx^2 \:-\:\sqrt{2}x \: + 1 \:= \:0 \\\\

\qquad \dashrightarrow \sf k(1)^2 \:-\:\sqrt{2}(1) \: + 1 \:=\:0 \\\\

\qquad \dashrightarrow \sf k(1) \:-\:\sqrt{2} \: + 1 \:=\:0 \\\\

\qquad \dashrightarrow \sf k \:-\:\sqrt{2} \: + 1 \:=\:0 \\\\

\qquad \dashrightarrow \sf k \: \:=\:\sqrt{2} - 1 \:  \\\\

\qquad \dashrightarrow \underline {\boxed {\pmb{\frak{\pink{\: k \: \:=\:\sqrt{2} - 1 \:\:}}}}} \\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\qquad \qquad \underline {\underline {\mathbb{\:\:\bigstar \:\:VERIFICATION \:\::\:}}}\\\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀G I V E N P O L Y N O M I A L : p(x) = kx² - \sqrt{2}x + 1

\qquad \dashrightarrow \sf kx^2 \:-\:\sqrt{2}x \: + 1 \:= \:0 \\\\

As , We know that ,

\qquad \dag\:\:\bigg\lgroup \sf{ \:g(x) \: =\:x \:=\: 1 \: }\bigg\rgroup \\\\

\qquad \dag\:\:\bigg\lgroup \sf{ \:k \: \:=\:\sqrt{2} - 1 \:  \: }\bigg\rgroup \\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \dashrightarrow \sf kx^2 \:-\:\sqrt{2}x \: + 1 \:= \:0 \\\\

\qquad \dashrightarrow \sf \Big\{ \sqrt{2} - 1 \Big\} \:(1)^2 \:-\:\sqrt{2}(1) \: + 1 \:= \:0 \\\\

\qquad \dashrightarrow \sf \Big\{ \sqrt{2} - 1 \Big\} \:(1) \:-\:\sqrt{2} \: + 1 \:= \:0 \\\\

\qquad \dashrightarrow \sf  \sqrt{2} - 1  \:-\:\sqrt{2} \: + 1 \:= \:0 \\\\

\qquad \dashrightarrow \sf  0 \:= \:0 \\\\

\qquad \dashrightarrow \underline {\boxed {\pmb{\frak{\pink{\: 0 \: \:=\:0 \:\:}}}}} \\\\

⠀⠀⠀⠀⠀\therefore {\underline {\pmb{\bf Hence, \:Verified \:}}}\\


Glorious31: Great !
Similar questions