Math, asked by YourHelperAdi, 15 hours ago

Question!
Find the value of :
 \displaystyle \rm \:   \sqrt{ \frac{ {x}^{ {y}^{2} }  {y}^{ {x}^{2} }  {z}^{(x + y)}  }{ {(x + y)}^{ {(x + y)}^{2} } } }
Please don't Spam ​

Attachments:

Answers

Answered by user0888
81

\rm\large\underline{\text{Main idea}}

We know that,

\rm\cdots\longrightarrow (a^{m})^{n}=a^{mn}\ \cdots[1]

We know that,

\rm\cdots\longrightarrow a^{(m^{n})}=a^{m^{n}} \cdots[2]

We know that,

\rm\cdots\longrightarrow\sqrt[\rm n]{\rm a^{\rm m}}=a^{\frac{m}{n}}\ \cdots [3]

We know that,

\rm\cdots\longrightarrow(ab)^{n}=a^{n}b^{n}\ \cdots[4]

Provided that \rm a>0 and \rm b>0.

\rm\large\underline{\text{Explanation}}

The required expression is the following.

\rm\cdots\longrightarrow\sqrt{\dfrac{m^{n^{2}}n^{m^{2}}a^{(m+n)}}{(m+n)^{(m+n)^{2}}}}

According to \rm[2],

\rm\cdots\longrightarrow\sqrt{\dfrac{m^{(n^{2})}n^{(m^{2})}a^{(m+n)}}{(m+n)^{(m+n)^{2}}}}

According to \rm[3],

\rm\cdots\longrightarrow\left(\dfrac{m^{(n^{2})}n^{(m^{2})}a^{(m+n)}}{(m+n)^{(m+n)^{2}}}\right)^{\frac{1}{2}}

According to \rm[1] and \rm[4],

\rm\cdots\longrightarrow\dfrac{m^{\frac{n^{2}}{2}}n^{\frac{m^{2}}{2}}a^{\frac{(m+n)}{2}}}{(m+n)^{\frac{(m+n)^{2}}{2}}}

The correct answer is choice (b) \rm\dfrac{m^{\frac{n^{2}}{2}}n^{\frac{m^{2}}{2}}a^{\frac{m+n}{2}}}{(m+n)^{\frac{(m+n)^{2}}{2}}}.

\large\textrm{\underline{Extra information}}

\boxed{\textrm{Zero and negative exponents}}

\rm\cdots\longrightarrow a^{0}=1

\rm\cdots\longrightarrow a^{-n}=\dfrac{1}{a^{n}}

Provided that \rm a\neq0.

\boxed{\textrm{Rational exponents}}

\rm\cdots\longrightarrow a^{\frac{1}{n}}=\sqrt[\rm n]{\rm a}

\rm\cdots\longrightarrow a^{\frac{m}{n}}=\sqrt[\rm n]{\rm a^{m}}

Provided that \rm a>0, for integers \rm m and \rm n(n\geq2).

\boxed{\textrm{Real exponents}}

\rm\cdots\longrightarrow a^{m}\times a^{n}=a^{mn}

\rm\cdots\longrightarrow a^{m}\div a^{n}=a^{m-n}

\rm\cdots\longrightarrow (a^{m})^{n}=a^{mn}

\rm\cdots\longrightarrow (ab)^{n}=a^{n}b^{n}

Provided that \rm a>0 and \rm b>0.

\large\textrm{\underline{Quesion corner}}

\large{\red{\bigstar}\textrm{\underline{Question}}}

If \rm x=\sqrt[6]{2}, simplify \rm\dfrac{1+x+x^2+\cdots+x^{10}}{x^{-2}+x^{-3}+\cdots+x^{-12}}.

\large\red{\bigstar}\textrm{\underline{Answer}}

If we take the exponent 6 on both sides,

\rm\cdots\longrightarrow x^{6}=2

The given expression is the following.

\rm\cdots\longrightarrow\dfrac{x^{10}+x^{9}+x^{8}+\cdots+1}{x^{-12}(x^{10}+x^{9}+x^{8}+\cdots+1)}

\rm\cdots\longrightarrow\dfrac{1}{x^{-12}}

\rm\cdots\longrightarrow x^{12}

\rm\cdots\longrightarrow(x^{6})^{2}

\rm\cdots\longrightarrow4

Answered by singhsuryanshu341
48

Step-by-step explanation:

given :

  • Find the value of :
  •  \displaystyle \rm \: \sqrt{ \frac{ {x}^{ {y}^{2} } {y}^{ {x}^{2} } {z}^{(x + y)} }{ {(x + y)}^{ {(x + y)}^{2} } } }

solution :

  • please check the attached file
Attachments:
Similar questions