Math, asked by guptaananya2005, 1 month ago

Question for Brainly Moderators, Brainly stars, best users. Sum the following series

\sf \frac{5}{ {7}^{2} {3}^{2} } + \frac{9}{ {7}^{2} {11}^{2} } +\frac{13}{ {11}^{2} {15}^{2} } + - - - - \infty

Please don't spam.

Quality answer expected as always get.

Thank you in advance

Spammers please far away.​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

The given series is

\rm :\longmapsto\:\sf \dfrac{5}{ {7}^{2} {3}^{2} } + \dfrac{9}{ {7}^{2} {11}^{2} } +\dfrac{13}{ {11}^{2} {15}^{2} } + - - - - \infty

can be rewritten as

\rm  = \:\sf \dfrac{5}{ {3}^{2} {7}^{2} } + \dfrac{9}{ {7}^{2} {11}^{2} } +\dfrac{13}{ {11}^{2} {15}^{2} } + - - - - \infty

Let assume that,

\rm S_n = \:\sf \dfrac{5}{ {3}^{2} {7}^{2} } + \dfrac{9}{ {7}^{2} {11}^{2} } +\dfrac{13}{ {11}^{2} {15}^{2} } + - - - - n \: terms

is further rewritten as by using nth term of an AP of the following AP series :-

\rm :\longmapsto\:5,9,13, -  -  - , \: a_n = 4n + 1

\rm :\longmapsto\:3,7,11, -  -  - , \: a_n = 4n - 1

\rm :\longmapsto\:7,11, 15,-  -  - , \: a_n = 4n +3

So, above series can be rewritten as

 \red{\rm S_n = \:\sf \dfrac{5}{ {3}^{2} {7}^{2} } + \dfrac{9}{ {7}^{2} {11}^{2} } +\dfrac{13}{ {11}^{2} {15}^{2} } + - - -\dfrac{4n + 1}{(4n - 1)^{2}(4n + 3)^{2}} }

can be further rewritten as

 \red{\sf S_n = \dfrac{1}{8}\bigg[ \dfrac{40}{ {3}^{2} {7}^{2} } + \dfrac{72}{ {7}^{2} {11}^{2} } +\dfrac{104}{ {11}^{2} {15}^{2} } + - - -\dfrac{32n + 8}{(4n - 1)^{2} (4n + 3) ^{2} } \bigg]}

 \red{\sf S_n = \dfrac{1}{8}\bigg[ \dfrac{49 - 9}{ {3}^{2} {7}^{2} } + \dfrac{121 - 49}{ {7}^{2} {11}^{2} } +\dfrac{225 - 121}{ {11}^{2} {15}^{2} } + - - -\dfrac{24n + 8n + 9 - 1}{(4n - 1)^{2} (4n + 3) ^{2} } \bigg]}

 \red{\sf S_n = \dfrac{1}{8}\bigg[ \dfrac{ {7}^{2}  -  {3}^{2} }{ {3}^{2} {7}^{2} } + \dfrac{ {11}^{2}  -  {7}^{2} }{ {7}^{2} {11}^{2} } +\dfrac{ {15}^{2}  -  {11}^{2} }{ {11}^{2} {15}^{2} } + - - -\dfrac{ {(4n + 3)}^{2}  -  {(4n - 1)}^{2} }{(4n - 1)^{2} (4n + 3) ^{2} } \bigg]}

 \red{ \sf \:S_n  =\dfrac{1}{8}\bigg[\dfrac{1}{ {3}^{2} } - \dfrac{1}{ {7}^{2} }  + \dfrac{1}{ {7}^{2} }  - \dfrac{1}{ {11}^{2} }  + \dfrac{1}{ {15}^{2} }  - \dfrac{1}{ {11}^{2} }  +  -  -  + \dfrac{1}{ {(4n - 1)}^{2} }  - \dfrac{1}{ {(4n + 3)}^{2} } \bigg]  }

 \red{ \sf \:S_n  =\dfrac{1}{8}\bigg[\dfrac{1}{ {3}^{2} }   - \dfrac{1}{ {(4n + 3)}^{2} } \bigg]  }

So,

 \red{ \sf \:\displaystyle\lim_{n \to  \infty }S_n  =\displaystyle\lim_{n \to  \infty }\dfrac{1}{8}\bigg[\dfrac{1}{ {3}^{2} }   - \dfrac{1}{ {(4n + 3)}^{2} } \bigg]  }

 \red{ \sf \:\displaystyle\lim_{n \to  \infty }S_n  =\dfrac{1}{8}\bigg[\dfrac{1}{ {3}^{2} }   - 0 \bigg]  }

 \red{ \sf \:\displaystyle\lim_{n \to  \infty }S_n  =\dfrac{1}{72} }

Hence,

\:\boxed{ \tt{ \: \sf \dfrac{5}{ {7}^{2} {3}^{2} } + \dfrac{9}{ {7}^{2} {11}^{2} } +\dfrac{13}{ {11}^{2} {15}^{2} } + - - - - \infty =  \frac{1}{72}}}


pulakmath007: Excellent
Similar questions