Math, asked by amritanshu6563, 1 year ago

Question for Brainly Teachers​

Attachments:

Answers

Answered by hukam0685
8

Step-by-step explanation:

To find:

\left|\begin{array}{ccc}1+a^2-b^2&amp;2ab&amp;-2b\\2ab&amp;1-a^2+b^2&amp;2a\\</p><p>2b&amp;-2a&amp;1-a^2-b^2\end{array}\right|

Is a perfect cube.

Apply C1 -> C1-bC3

C2 ->C2+aC3

\left|\begin{array}{ccc}1+a^2+b^2&amp;0&amp;-2b\\0&amp;1+a^2+b^2&amp;2a\\b(1+a^2+b^2)&amp;-a(1+a^2+b^2)&amp;1-a^2-b^2\end{array}\right|

Take common from C1 and C2

(1+a^2+b^2)^2\left|\begin{array}{ccc}</p><p>1&amp;0&amp;-2b\\0&amp;1&amp;2a\\b&amp;-a&amp;1-a^2-b^2\end{array}\right|

R3 -> R3-b R1

(1+a^2+b^2)^2\left|\begin{array}{ccc}</p><p>1&amp;0&amp;-2b\\0&amp;1&amp;2a\\0&amp;-a&amp;1-a^2-b^2\end{array}\right|

Expand the determinant along C1

(1+a^2+b^2)^2 [1-a^2+b^2+2a^2]\\\\(1+a^2+b^2)^2(1+a^2+b^2)\\\\=(1+a^2+b^2)^3\\

Hence

Determinant=\left|\begin{array}{ccc}1+a^2-b^2&amp;2ab&amp;-2b\\2ab&amp;1-a^2+b^2&amp;2a\\2b&amp;-2a&amp;1-a^2-b^2\end{array}\right|

is a perfect cube.

Hope it helps you.

Go to the link for read more such questions

https://brainly.in/question/13362759

Answered by jaswasri2006
23

To find</p><p></p><p>\begin{gathered}|\begin{array}{ccc} 1+a^2-b^2&amp;2ab&amp;-2b\\ 2ab&amp;1-a^2+b^2&amp;2a\\ 2b&amp;-2a&amp;1-a^2-b^2\end{array} |\end{gathered}∣1+a2−b22ab2b2ab1−a2+b2−2a−2b2a1−a2−b2∣</p><p></p><p>Is a perfect cube.</p><p></p><p>Apply C1 -&gt; C1-bC3</p><p></p><p>C2 -&gt;C2+aC3</p><p></p><p>\begin{gathered}|\begin{array}{ccc} 1+a^2+b^2&amp;0&amp;-2b\\ 0&amp;1+a^2+b^2&amp;2a\\ b(1+a^2+b^2)&amp;-a(1+a^2+b^2)&amp;1-a^2-b^2\end{array} |\end{gathered}∣1+a2+b20b(1+a2+b2)01+a2+b2−a(1+a2+b2)−2b2a1−a2−b2∣</p><p></p><p>Take common from C1 and C2</p><p></p><p>\begin{gathered}(1+a^2+b^2)^2 |\begin{array}{ccc} 1&amp;0&amp;-2b\\ 0&amp;1&amp;2a\\ b&amp;-a&amp;1-a^2-b^2\end{array} |\end{gathered}(1+a2+b2)2∣10b01−a−2b2a1−a2−b2∣</p><p></p><p>R3 -&gt; R3-b R1</p><p></p><p>\begin{gathered}(1+a^2+b^2)^2 |\begin{array}{ccc} 1&amp;0&amp;-2b\\ 0&amp;1&amp;2a\\ 0&amp;-a&amp;1-a^2+b^2\end{array} |\end{gathered}(1+a2+b2)2∣10001−a−2b2a1−a2+b2∣</p><p></p><p>Expand the determinant along C1</p><p></p><p>\begin{gathered}(1+a^2+b^2)^2 [1-a^2+b^2+2a^2]\\\\(1+a^2+b^2)^2(1+a^2+b^2)\\\\=(1+a^2+b^2)^3\\\end{gathered}(1+a2+b2)2[1−a2+b2+2a2](1+a2+b2)2(1+a2+b2)=(1+a2+b2)3</p><p></p><p>Hence</p><p></p><p>\begin{gathered}determinant |\begin{array}{ccc} 1+a^2-b^2&amp;2ab&amp;-2b\\ 2ab&amp;1-a^2+b^2&amp;2a\\ 2b&amp;-2a&amp;1-a^2-b^2\end{array} |\end{gathered}determinant∣1+a2−b22ab2b2ab1−a2+b2−2a−2b2a1−a2−b2∣</p><p></p><p>is a perfect cube

Similar questions