Math, asked by brainlytwinklestar, 1 month ago

Question for Only:- ❏ Moderators ❏ Brainly Stars ❏ Best users ✰ QUESTION ✰ (1 + cot theta + tan theta )(sin theta - cos theta) is equal to secant theta upon cosec squared theta minus cosec squared theta upon secant squared theta Prove it​

Answers

Answered by TheUltimateDomb
5

Answer :-

Sinθ/(1 – cosθ) + Tanθ/(1 + cosθ) = Secθ.Cosecθ + Cotθ

Let us start with LHS

= Sinθ/(1 – cosθ) + Tanθ/(1 + cosθ)

= (sinθ(1 + cosθ) + Tanθ(1-Cosθ))/(1 – Cos²θ)

= (sinθ(1 + cosθ) + (Tanθ – Sinθ)) /Sin²θ

= ( 1 + cosθ + 1/Cosθ – 1)/Sinθ

= (cosθ + 1/Cosθ)/Sinθ

= 1/CosθSinθ + cosθ/Sinθ

= Secθ.Cosecθ + Cotθ

= RHS

Hence Proved

Answered by GraceS
8

\sf\huge\bold{Answer:}

Given :

⇒(1 +  \cot \theta +  \tan  \theta)( \sin  \theta -  \cos \theta) =  \frac{ \sec \theta }{ \cosec {}^{2}  \theta }  -  \frac{ \cosec   \theta}{ \sec {}^{2}  \theta}

To prove :

LHS=RHS

Solution :

\fbox{LHS}

 = (1 +  \cot \theta +  \tan  \theta)( \sin  \theta -  \cos \theta)

Using

⇒ \cot( \alpha ) =  \frac{ \cos( \alpha ) }{ \sin( \alpha ) } \\   ⇒ \tan( \alpha )  =  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }

we get,

 = (1 +  \frac{ \cos \theta }{ \sin \theta }  +  \frac{ \sin \theta }{ \cos \theta } )( \sin \theta -  \cos \theta)

Now,on multiplying both terms

 = ( \sin \theta  +  \cos \theta  +  \frac{ { \sin }^{2} \theta }{ \cos \theta }  -  \cos \theta -  \frac{ \cos {}^{2}  \theta }{ \sin \theta}   -  \sin \theta)

On simplifying ,we get

 =  \frac{ { \sin }^{2} \theta }{ \cos \theta }  -  \frac{ \cos {}^{2}  \theta }{ \sin \theta}

Now,using

⇒ \sin( \alpha ) =  \frac{1}{ \cosec( \alpha ) }  \\  ⇒ \cos( \alpha ) =  \frac{1}{ \sec( \alpha ) } \\   ⇒ \sin {}^{2} ( \alpha ) =  \frac{1}{ \cosec {}^{2} ( \alpha ) }  \\  ⇒ \cos {}^{2} ( \alpha ) =  \frac{1}{ \sec {}^{2} ( \alpha ) }

We get,

 =  \frac{ \sec \theta }{ \cosec {}^{2} \theta }  -  \frac{ \cosec \theta }{ \sec {}^{2}\theta  }

\fbox{RHS}

 =  \frac{ \sec \theta }{ \cosec {}^{2} \theta }  -  \frac{ \cosec \theta }{ \sec {}^{2}\theta  }

\boxed{LHS=RHS}

Hence proved !

Similar questions