Math, asked by celestialboysyt24, 1 month ago

The value of m for which the two vectors 2i-j+2k and 3i+mj+k are perpendicular is​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Let we assume that

 \red{\rm :\longmapsto\: \vec{a} = 2 \hat{i} -  \hat{j} + 2 \hat{k}}

and

 \red{\rm :\longmapsto\: \vec{b} = 3 \hat{i} + m\hat{j}  +  \hat{k}}

Now, it is given that,

\rm :\longmapsto\: \vec{a} \:  \perp \:  \vec{b}

\bf\implies \: \vec{a} \: . \:  \vec{b} \:  =  \: 0

\rm :\longmapsto\:(2 \hat{i} -  \hat{j} + 2 \hat{k}).(3 \hat{i} +  m\hat{j} +  \hat{k}) = 0

\rm :\longmapsto\:6 - m + 2 = 0

\rm :\longmapsto\:8- m = 0

\bf\implies \:m \:  =  \: 8

Additional Information :-

\boxed{ \bf{ \: \vec{a}. \vec{b} =  | \vec{a}|  \: | \vec{b}|  \: cos \theta}}

\boxed{ \bf{ \: \vec{a} \times  \vec{b} =  | \vec{a}|  \: | \vec{b}|  \: sin \theta \:  \hat{n}}}

\boxed{ \bf{ \: {( \vec{a}. \vec{b})}^{2}  +  { | \vec{a} \times  \vec{b}| }^{2}  =  { | \vec{a}| }^{2} { | \vec{b}| }^{2}}}

\boxed{ \bf{ \: \vec{a}. \vec{b} =  \vec{b}. \vec{a}}}

\boxed{ \bf{ \: \vec{a} \times  \vec{b} \:  =  -  \:  \vec{b} \times  \vec{a}}}

\boxed{ \bf{ \:cos\theta  =  \frac{ \vec{a}. \vec{b}}{ | \vec{a}|  \:  | \vec{b}| }}}

Similar questions