Question ;-
=> Write all the unit vector in XY - plane .
Answers
Let the unit be å
We know that
å = xî + yỹ + zk
Since the vector is in X-Y plane, there is no Z- coordinate. Hence,
å = xî + yỹ + Ok
d = xî + yỹ
Taking a general vector à, making an angle with X- axis
Unit vector in direction of x axis is î & in y axis is ſ
Given that
ā makes an angle of 0 with x-axis
So, angle between å & î is e
Now, we know that,
ä.b = lä||b| cos 0,
Putting å = å , b =i&e=0
å î = Jä||î] cos 0
å î = 1x 1 x cos
ä .î = cos e
(xî + yf + Ok). î = cos e
(xi + y) + Ok). (1î + of + Ok) = cos e x.1 + y.0 + 0.0 = cos 0 X = cos e
Similarly,
å makes an angle of (90°-) with y-axis So, angle between a & j is (90° - )
Now, we know that,
ä.b = lä|b cos 0,
Putting a = a, b = j & = (90°-0)
å .j = lalli cos (90° – 0)
.j = 1x1x cos (90°-0)
a .j = cos (90°- 8)
ä .j = sin e
(xî + yỹ + Ok). ĵ = sin e
(xî + yỹ + 0k). (0î + 1j + Ok) = sin 0
x.0 + y.1 + 0.0 = sin 0
y = sin 0
So, x= cos 0 and y = sin 0
So, x = cos and y = sin 0
Thus,
d = xî + yỹ
= cos eî + sin 0 î
teachoo.com
: a = cos e î + sin 0 j
This value will be true in all quadrants
Quadrant 1: Os 0 < 90°
Quadrant 2: 90° x< 180°
Quadrant 3: 180° <0 < 270°
Quadrant 4: 270° se< 360°
90°
x(t)
So, 0° < 0s360°
i.e. 0 s 0s2M
So, d = cos Bî + sinej; for 0 ses 2n
Every vector in xy plane can be written as :
- But as is a unit vector :
So magnitude cannot change but we can change the direction of unit vector to get new vector, so :