Math, asked by Ammu4670, 1 month ago

Question:-

How many consecutive natural numbers starting from one should be added to get 300?

Answers

Answered by shivamkumar2011
1

Answer:

The number series 1, 2, 3, 4, . . . . , 299, 300. Therefore, 45150 is the sum of positive integers upto 300.

Answered by XxLuckyGirIxX
193

\bf\red{QuestioN:-}

How many consecutive natural numbers starting from one should be added to get 300?

\bf\green{AnsweR:-}

The concept we used here is,

\large{\boxed{\bf{\longrightarrow\dfrac{n(n+1)}{2}}}}}

Then, according to the given question,

\longrightarrow\bf{\dfrac{n(n+1)}{2}=300}

\longrightarrow\bf{n^2+1=300\times2=600}

\longrightarrow\bf{n^2+1-600=0} ------------- Eq formed

Now we got an equation here.  

So, now we can use another concept here. That is,

\large{\boxed{\bf{n=\dfrac{-b+/-\sqrt{b^2-4ac}}{2a}}}}}}

Here,

  • a = 1
  • b = 1
  • c = 600

\longmapsto\bf{n=\dfrac{-b+/-\sqrt{b^2-4ac}}{2a}}

\longmapsto\bf{n=\dfrac{-1+/-\sqrt{1^2-4\times1\times-600}}{2\times1}}

\longmapsto\bf{n=\dfrac{-1+/-\sqrt{1+2400}}{2}}

\longmapsto\bf{n=\dfrac{-1+/-\sqrt{2401}}{2}}

\longmapsto\bf{n=\dfrac{-1+/-(49)}{2}}

\longmapsto\bf{n=\dfrac{-1+49}{2}~/~\dfrac{-1-49}{2}}

\longmapsto\bf{n=\dfrac{48}{2}~/~\dfrac{-50}{2}}

\longmapsto\bf{n=24~/~-25}

Number of natural numbers can't be negative.  

So the answer is 24.

Happy Learning!!

Similar questions