Math, asked by Anonymous, 2 months ago

Question :-

If a and b are rational numbers and ( 4 + 3√5)/(4-3√5) = a + b, find the values of a and b

Dont spam !
need quality answer.​

Answers

Answered by Anonymous
81

Solution :-

We have

 \frac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} }  = \frac{(4 + 3 \sqrt{5}) }{(4 - 3 \sqrt{5}) }  \times  \frac{(4 + 3 \sqrt{5}) }{(4 + 3 \sqrt{5} )}  \\  \\  =  \frac{(4 + 3 \sqrt{5})^{2}  }{ ({4})^{2} - (3 \sqrt{5})^{2}   }  =   \frac{(4 + 3 \sqrt{5} )^{2} }{16 - 45}  =  \frac{(4 + 3 \sqrt{5}) ^{2}  }{ - 29}  \\  \\  =  \frac{(4)^{2}  + (3 \sqrt{5})^{2}  + 2 \times 4 \times 3 \sqrt{5} }{ - 29}  \\  \\  =  \frac{(16 + 45 + 24 \sqrt{5}) }{ - 29}  \\  \\   =  \frac{(61 + 24 \sqrt{5}) }{ - 29}  \\  \\  = ( \frac{ - 61}{29}) + ( \frac{ - 24}{29} ) \sqrt{5} . \\  \\  \therefore  \frac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} }  = a + b \sqrt{5}  \leftrightarrow ( \frac{ - 61}{29} ) +  (\frac{ - 24}{29} ) \sqrt{5}  = a + b \sqrt{5} . \\  \\  \therefore a =   - \frac{61}{29}   \: and \:  \  b =   - \frac{24}{29} .

Answered by spacelover123
96

Correct Question

If a and b are rational numbers and \dfrac{4 + 3\sqrt{5} }{4-3\sqrt{5} } = a + b√5, find the values of a and b.

____________________________

Answer

We need to first rationalize the denominator.

So first we will multiply the numerator and denominator with the conjugate of the denominator. So while finding the conjugate we just need to change the middle sign of the expression.

Conjugate of denominator → 4 + 3√5

\sf \implies \dfrac{4 + 3\sqrt{5} }{4-3\sqrt{5} } \times \dfrac{4+3\sqrt{5}}{4+3 \sqrt{5}}

\sf \implies \dfrac{(4 + 3\sqrt{5} )^{2}}{(4-3\sqrt{5} )(4+3 \sqrt{5})}

Now we need to use algebraic identities to simplify. Here we will use two of them -:

  • (a + b)² = a² + 2ab + b²
  • (a + b)(a - b) = a² - b²

\sf \implies \dfrac{(4 + 3\sqrt{5} )^{2}}{(4-3\sqrt{5} )(4+3 \sqrt{5})}

\sf \implies \dfrac{(4)^{2}+2(4)(3\sqrt{5})+ (3\sqrt{5})^{2}}{(4)^{2}-(3\sqrt{5} )^{2}}

\sf \implies \dfrac{16+24\sqrt{5}+ 45}{16-45}

\sf \implies \dfrac{61+24\sqrt{5}}{16-45}

\sf \implies \dfrac{61+24\sqrt{5}}{-29}

Now we will make the denominator positive by multiplying -1 to the numerator and denominator.

\sf \implies \dfrac{61+24\sqrt{5}}{-29}\times \dfrac{-1}{-1}

\sf \implies \dfrac{-61-24\sqrt{5}}{29}

Now we have rationalized the given real number. So let's find the value of a and b respectively.

∴ a = \bf \dfrac{-61}{29} and b = \bf \dfrac{-24}{29}

____________________________

Similar questions