Math, asked by Anonymous, 11 months ago

Question→

If a + b =π/2 , show that maximum value of cosAcosB is 1/2

Answers

Answered by kanchisingh66
1

Answer:

Cosacosb=(1/2)*(cos(a+b)+cos(a-b))

since a+b is 90 degrees cos(a+b) is 0

so cosacosb=1/2*cos(a-b)

max value of cos function is 1 when a=b=45 degrees I.e a-b=0

hence max value is 1/2

Hope it's help you.....

Answered by Anonymous
16

\huge\bigstar\mathfrak\pink{\underline{\underline{SOLUTION}}}

a+b= π/2= (90°)

a= 90°-B........(1)

A/q,

  =  >  \frac{1}{2} (2cosA \:cosB) \\  \\  =  >  \frac{1}{2} [2cos(90 - B)cosB]\:  \:  \:  \:  \:  \: [from \: (1)]\\  \\  =  >  \frac{1}{2} (2sinB  \: cosB) \\  \\  =  >  \frac{1}{2} (sinB). \:  \:  \:  \:  \:  \: (sin2 \theta = 2sin \theta \: cos \theta)

Maximum value of sin i1 from [-1,1], putting in above

 =  >  \frac{1}{2} (1) \\  \\  =  >  \frac{1}{2}  \: \:  \:  \: [hence \: proved]

Hope it helps ☺️

Similar questions