Math, asked by Anonymous, 3 months ago

Question :-

☆ If a, b, c and d are in G.P. show that

\bf\to{(a^2 + b^2 + c^2) (b^2 + c^2 + d^2) = (ab + bc + cd)^2}

⚠️No spam⚠️

♦ Quality answer ✅
♦ Explanation ✅
♦ Copy paste ❌​

Answers

Answered by assingh
52

Topic :-

Geometric Progression

Given :-

a, b, c and d are in G.P.

To Prove :-

(a^2+b^2+c^2)(b^2+c^2+d^2)=(ab+bc+cd)^2

Solution :-

Assume 't' as first term and 'r' as common multiple of the GP.

nth term of GP is given by,

a_n=ar^{n-1}

where

a_n=nth\:\:term

a = First Term

r = Common multiple

So,

a_1=tr^{1-1}=tr^0=t=a

a_2=tr^{2-1}=tr^1=tr=b

a_3=tr^{3-1}=tr^2=c

a_4=tr^{4-1}=tr^3=d

Solving LHS,

(a^2+b^2+c^2)(b^2+c^2+d^2)

(t^2+(tr)^2+(tr^2)^2)((tr)^2+(tr^2)^2+(tr^3)^2)

(t^2+t^2r^2+t^2r^4)(t^2r^2+t^2r^4+t^2r^6)

t^2(1+r^2+r^4).t^2r^2(1+r^2+r^4)

t^4r^2(1+r^2+r^4)^2

Solving RHS,

(ab+bc+cd)^2

(t.tr+tr.tr^2+tr^2.tr^3)^2

(t^2r+t^2r^3+t^2r^5)^2

(t^2r(1+r^2+r^4))^2

(t^2r)^2(1+r^2+r^4)^2

t^4r^2(1+r^2+r^4)^2

We observe that LHS = RHS.

Hence, Proved !!

Answered by mathdude500
15

Given :-

  • a, b, c, d are in G. P.

So,

Let

  • first term of G.P. is 'a'.

and

  • Common ratio is 'r'.

Let

 \bull \sf \: b \:  =  \: ar

 \bull \sf \: c \:  =  \: a {r}^{2}

 \bull \sf \: d \:  =  \: a {r}^{?}

Consider,

\rm :\implies\: \bf \: LHS

\rm :\implies\:( {a}^{2}  +  {b}^{2}  +  {c}^{2} )( {b}^{2}  +  {c}^{2}  +  {d}^{2} )

On substituting the values of b, c, and d, we get

\rm :\implies\: \bigg( {a}^{2}  +  {(ar)}^{2}  +  {(a {r}^{2} )}^{2}  \bigg) \bigg( {(ar)}^{2} +  {(a {r}^{2}) }^{2} +  {a {r}^{3} )}^{2}    \bigg)

\rm :\implies\:( {a}^{2}  +  {a}^{2}  {r}^{2}  +  {a}^{2}  {r}^{4} )( {a}^{2}  {r}^{2}  +  {a}^{2}  {r}^{4}  +  {a}^{2}  {r}^{4} )

\rm :\implies\: {a}^{2} (1 +  {r}^{2}  +  {r}^{4} ){a}^{2} {r}^{2}  (1 +  {r}^{2}  +  {r}^{4} )

\rm :\implies\: {a}^{4}  {r}^{2}  { \bigg(1 +  {r}^{2}  +  {r}^{4} \bigg)}^{2}

\rm :\implies\: { \bigg(r {a}^{2} (1 +  {r}^{2}  +  {r}^{4} )\bigg)}^{2}

\rm :\implies\: { \bigg(  {a}^{2} {r}^{2}  +   {a}^{2} {r}^{3}  +   {a}^{2} {r}^{5} \bigg)}^{2}

\rm :\implies\: { \bigg(a.ar + ar. {ar}^{2}  +   {ar}^{2} .{ar}^{3} \bigg)}^{2}

\rm :\implies\: { \bigg(ab \:  +  \: bc \: +  \:  cd \bigg)}^{2}

\rm :\implies\: \bf \: RHS

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

Similar questions