Physics, asked by Anonymous, 8 months ago

Question :

If an electron is subjected to a force of 10^-25 N in an X-ray machine, then find out the time taken by the electron to cover a distance of 0.2 m. Take mass of the electron 10^-30kg.​

Answers

Answered by Anonymous
191

Answer:

\tt {\pink{Given}}\begin{cases} \sf{\green{Force= {10}^{ - 25}  \:N }}\\ \sf{\blue{Mass=10^{ - 30} \: kg }}\\ \sf{\orange{Distance=0.2 \: m}}\\ \sf{\red{Time \:taken=?}}\end{cases}

  • Firstly we need to find Acceleration of electron. So, as we know to calculate acceleration we will use below given formula :]

\bigstar \:  \:  \sf Acceleration = \dfrac{Force}{Mass} \:  \:  \bigstar \\  \\

  • Now, Putting the values which is given in the question in the above given formula we get :]

:\implies \sf Acceleration = \dfrac{10^{-25}}{10^{-30}} \\  \\

: \implies \sf Acceleration = 10 \: ms^{ - 2}  \\

\underline{ \textsf{ Hence, the Acceleration of electron is \textbf{10 ms$^{-2}$}}}. \\

_______________________

  • The time taken by the electron (t) to cover distance (s) of 0.2 m can be given by second equation of motion :]

\bigstar \:\:\sf s = ut +  \dfrac{1}{2}  \: a{t}^{2}\:\:\bigstar\\  \\

\tt {\pink{We \:have}}\begin{cases} \sf{\green{Distance\: (s) = 0.2 \:m }}\\ \sf{\blue{Initial \: velocity\: (u) = 0}}\\ \sf{\orange{Acceleration\: (a)=10 \: ms^{-2}}}\\ \sf{\red{Time \:taken=?}}\end{cases}

\dashrightarrow \:  \:  \sf 0.2 = 0 +  \dfrac{1}{2} \times  {10}^{5}  \times  {t}^{2} \\  \\  \\

\dashrightarrow \:  \:  \sf 0.2  \times 2={10}^{5}  \times  {t}^{2} \\  \\  \\

\dashrightarrow \:  \:  \sf 0.4  =  {10}^{5}  \times  {t}^{2} \\  \\  \\

\dashrightarrow \:  \:  \sf {t}^{2} = 0.4 \times  {10}^{ - 5}  \\  \\  \\

\dashrightarrow \:  \:  \sf {t}^{2}  = 4 \times  {10}^{ - 6} \\  \\  \\

\dashrightarrow \:  \:   \underline{ \boxed{\sf t  = 2 \times  {10}^{ - 3} \: s }}\\  \\  \\

\therefore\underline{ \textsf{ Time taken by the electron to cover a distance of 0.2 m is  \textbf{10 ms$^{-3}$ seconds}}}. \\

Answered by Anonymous
59

Answer:

The time taken by the electron to cover a distance of 0.2 m is 2×10^-3 sec.

Explanation:

Given :-

  • An electron is subjected to a force of \sf{10^{-25}} N in an X-ray machine.
  • Mass of the electron is \sf{10^{-30}} kg.

To find :-

  • The time taken by the electron to cover a distance of 0.2 m.

Solution :-

  • Force (F) of electron = \sf{10^{-25}} N
  • Mass (m) of the electron =\sf{10^{-30}} kg

Now find the acceleration of the electron.

Formula used :

{\boxed{\sf{F=ma}}}

  • [ Put values ]

\implies\sf{10^{-25}=10^{-30}\times\:a}

\implies\sf{10^{-30}\times\:a=10^{-25}}

\implies\sf{a=\dfrac{10^{-25}}{10^{-30}}}

\implies\sf{a=10^5}

Then the acceleration of the electron is \sf{10^{5}} m/s².

Formula used :

{\boxed{\sf{S=ut+\dfrac{1}{2}at^2}}}

  • S = 0.2 m
  • u = 0 m/s
  • a = \sf{10^5} m/s²
  • t = ?

[put values ]

\implies\sf{0.2=0\times\:t+\dfrac{1}{2}\times\:10^5\times\:t^2}

\implies\sf{0.2=\dfrac{10^5\:t^2}{2}}

\implies\sf{10^5t^2=0.4}

\implies\sf{t^2=4\times\:10^{-6}}

\implies\sf{t=2\times\:10^{-3}}

Therefore, the time taken by the electron to cover a distance of 0.2 m is 2×10^-3 sec.

________________

Similar questions