Physics, asked by Anonymous, 5 months ago

Question:-

In a compound microscope focal length of objectives lens is 1.2cm & focal length of eye piece is 3.0 cm when objects is kept at 1.25 cm infront of objective , final image is formed at ∞ . Magnifying power is ​

Answers

Answered by shomekeyaroy79
29

Given,

Fe = 3 cm

Fo = 1.2 cm

Uo= 1.25 cm

Ve= ∞

From,

 \frac{1}{uo}  +  \frac{1}{vo}  =  \frac{1}{fo}

We get,

 \frac{1}{vo}  =  \frac{1}{1.2}  -  \frac{1}{1.25}

vo = 30cm

Magnification of microscope m =

 \frac{vo}{uo} ( \frac{D}{fe} )

Therefore, m =

 \frac{30}{1.25} ( \frac{25}{3}) \:  \:  \:  \:  \:  = 200.

Answered by Asterinn
56

Given :

  • Focal length of objective lens (fo)= 1.2 cm

  • focal length of eye piece (fe)= 3.0 cm

  • objects is kept at 1.25 cm infront of objective (i.e u = 1.25 cm)

To find :

  • Magnifying power of the compound microscope when final image is formed at infinity.

Formula used :

Lens Formula :-

 \sf \dfrac{1}{v}  -  \dfrac{1}{u}  =  \dfrac{1}{f}

Magnification :-

 \sf \: m =  \dfrac{v_o}{u_o}  \times  \dfrac{D}{f_e}

Solution :

First by using lens formula we will find Vo.

 \implies\sf \dfrac{1}{v_o}  -  \dfrac{1}{u_o}  =  \dfrac{1}{f_o}

\implies\sf \dfrac{1}{v_o}  -  \dfrac{1}{( - 1.25)}  =  \dfrac{1}{1.2}

\implies\sf \dfrac{1}{v_o}   +  \dfrac{1}{ 1.25}  =  \dfrac{1}{1.2}

\implies\sf \dfrac{1}{v_o}   =  \dfrac{1}{1.2}  -  \dfrac{1}{ 1.25}

\implies\sf \dfrac{1}{v_o}   =  \dfrac{10}{12}  -  \dfrac{100}{ 125}

LCM of 12 and 125 = 12× 125 = 1500

\implies\sf \dfrac{1}{v_o}   =  \dfrac{1250 - 1200}{1500}

\implies\sf \dfrac{1}{v_o}   =  \dfrac{50}{1500}

\implies\sf \dfrac{1}{v_o}   =  \dfrac{5 \cancel0}{150\cancel0}

\implies\sf \dfrac{1}{v_o}   =  \dfrac{ \cancel5 \:  \:  \: 1}{\cancel{150} \:  \:  \:  \: 30}   =  \dfrac{1}{30}

therefore , Vo = 30 cm

Now we will find magnification :-

\sf \: m =  \dfrac{30}{1.25}  \times  \dfrac{25}{3}

(D= 25)

 \implies\sf \: m =  \dfrac{30}{125}  \times  \dfrac{25}{3}  \times 100

\sf \implies\: m =  \dfrac{ \cancel{30} \:  \: 10}{ \cancel{125} \:  \: 5}  \times  \dfrac{\cancel{25} \:  \: 1}{ \cancel3 \:  \: 1}  \times 100 =  \dfrac{10}{5}  \times 100

 \implies \sf  m =  \dfrac{ \cancel{10} \:  \: 2}{\cancel5 \:  \: 1}  \times 100 = 200

Answer : 200

Similar questions