Math, asked by salm37, 4 months ago

question in attachment​

Attachments:

Answers

Answered by BrainlyEmpire
27

Given :-

 \rm( 1+ tan^{2} A ) +  \bigg( 1 +  \dfrac{1}{tan^{2} A}  \bigg) =  \dfrac{1}{ {sin}^{2} A - {sin}^{4} A}

To prove :-

  • LHS = RHS

Proof :-

 \rm \:LHS = \rm( 1+ tan^{2} A ) +  \bigg( 1 +  \dfrac{1}{tan^{2} A}  \bigg)  \\  \\ \rm  RHS =  \dfrac{1}{ {sin}^{2} A - {sin}^{4} A}

\sf LHS = \rm( 1+ tan^{2} A ) +  \bigg( 1 +  \dfrac{1}{tan^{2} A}  \bigg)  \\  \\ \longrightarrow \rm( 1+  \frac{ {sin}^{2} A}{ {cos}^{2} A}   ) +  \bigg( 1 +  \dfrac{{cos}^{2} A}{{sin}^{2} A}  \bigg)\\   \\ \\ \longrightarrow \rm(   \dfrac{ {cos}^{2} A + {sin}^{2} A}{ {cos}^{2} A}   ) +  \bigg(    \dfrac{{cos}^{2} A + {sin}^{2} A}{{sin}^{2} A}  \bigg)\\   \\ \\ \longrightarrow \rm \bigg(    \dfrac{1}{{cos}^{2} A}  \bigg)+  \bigg(    \dfrac{1}{{sin}^{2} A}  \bigg)\\   \\ \\ \longrightarrow \rm     \dfrac{{cos}^{2} A +{sin}^{2} A }{{cos}^{2}A \: {sin}^{2} A}  = \dfrac{1}{{cos}^{2} A \: {sin}^{2} A}......(1)

\rm  RHS =  \dfrac{1}{ {sin}^{2} A - {sin}^{4} A}  \\   \\ \\ \rm \longrightarrow    \dfrac{1}{ {sin}^{2} A - {sin}^{4} A}\\   \\ \\ \rm \longrightarrow    \dfrac{1}{ {sin}^{2} A (1- {sin}^{2} A)}\\   \\ \\ \rm \longrightarrow   \dfrac{1}{ {sin}^{2} A  \: {cos}^{2} A}.......(2)

Therefore , from (1) and (2) we get :- LHS = RHS

hence proved!

• Additional Information :-

• Trigonometric Identities :-

\boxed{\begin{minipage}{6cm} Important Trigonometric identities :- \\ \\ $\: \: 1)\:\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\:\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\:\cos^2\theta=1-\sin^2\theta \\ \\ 4)\:1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5)\: \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\:\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\:\sec^2\theta=1+\tan^2\theta \\ \\ 8)\:\sec^2\theta-\tan^2\theta=1 \\ \\ 9)\:\tan^2\theta=\sec^2\theta-1$\end{minipage}}

Answered by MrImpeccable
25

{\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}}

To Prove:

  •  \left(1 + \tan^2A \right) + \left(1 + \dfrac{1}{\tan^2A} \right) = \dfrac{1}{\sin^2A - \sin^4A} \\

Proof:

LHS =  \left(1 + \tan^2A \right) + \left(1 + \dfrac{1}{\tan^2A} \right)

RHS =  \dfrac{1}{\sin^2A - \sin^4A} \\

 Taking\:LHS, \implies \left(1 + \tan^2A \right) + \left(1 + \dfrac{1}{\tan^2A} \right) \\ \\ \implies \left(1 + \dfrac{\sin^2A}{\cos^2A} \right) + \left(1 + \dfrac{\cos^2A}{\sin^2A} \right) \\ \\ \implies \left(\dfrac{\cos^2A+\sin^2A}{\cos^2A} \right) + \left(\dfrac{\sin^2A+\cos^2A}{\sin^2A} \right) \\ \\ \implies \left(\dfrac{1}{\cos^2A} \right) + \left(\dfrac{1}{sin^2A} \right) \\ \\ \implies \left(\dfrac{\sin^2A+\cos^2A}{\sin^2A*\cos^2A} \right) \\ \\ \implies \left(\dfrac{1}{\sin^2A*\cos^2A} \right) \\ \\ \implies \left(\dfrac{1}{\sin^2A*(1-\sin^2A)} \right) \\ \\ \implies \left(\dfrac{1}{\sin^2A - \sin^4A}\right) = RHS\: \\ \\ \\ HENCE\:PROVED

Formula used:

  •  \sin^2A + \cos^2A = 1
  •  \cos^2A = 1 - \sin^2A \\
  •  \tan A = \dfrac{\sin A}{\cos A} \\ \\ \\

Learn More:

 \boxed{\begin{minipage}{6cm} Important Trigonometric identities :- \\ \\ $\: \: 1)\:\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\:\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\:\cos^2\theta=1-\sin^2\theta \\ \\ 4)\:1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5)\: \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\:\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\:\sec^2\theta=1+\tan^2\theta \\ \\ 8)\:\sec^2\theta-\tan^2\theta=1 \\ \\ 9)\:\tan^2\theta=\sec^2\theta-1$\end{minipage}}

HOPE IT HELPS!!!

Similar questions