Physics, asked by stiffviel, 3 months ago

question in the attachment!!!solve the problem​

Attachments:

Answers

Answered by BrainlyEmpire
2

The initial kinetic energy,

\sf{\longrightarrow K_i=\dfrac{1}{2}\,m(v_i)^2}

\sf{\longrightarrow K_i=\dfrac{1}{2}\cdot1 (2)^2}

\sf{\longrightarrow K_i=2\ J}

  • By work - energy theorem, the work done on the block when it moves along the patch is equal to change in kinetic energy.

\sf{\longrightarrow K_f-K_i=W}

\displaystyle\sf{\longrightarrow K_f-K_i=\int\limits_{0.10}^{2.01}F_r\ dx}

\displaystyle\sf{\longrightarrow K_f-K_i=-k\int\limits_{0.10}^{2.01}\dfrac{1}{x}\ dx}

\displaystyle\sf{\longrightarrow K_f-K_i=-k\Big[\log x\Big]_{0.10}^{2.01}}

\displaystyle\sf{\longrightarrow K_f-2=-0.5\cdot\log\left(\dfrac{2.01}{0.10}\right)}

\displaystyle\sf{\longrightarrow K_f-2=-0.5\log(20.1)}

\displaystyle\sf{\longrightarrow K_f= 2-0.5\times3}

\displaystyle\sf{\longrightarrow\underline{\underline{K_f=0.5\ J }}}

Answered by Anonymous
22

The change of energy is equal to work done so,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{\dfrac{{{mv}^{2}_f}}{2}-\dfrac{{{mv}^{2}_f}}{2}=W}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Thus,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{vf=\sqrt{\dfrac{2W}{m}+{v}^{2}_i}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

The work done is given by;

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\displaystyle\sf{W=\int_{x_1}^{x_2}Fdx=-k\int_{x_1}^{x_2}\dfrac{dx}{x}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{-k\:In\:\dfrac{x_2}{x_1}=-0.5\:In\:\dfrac{2.01}{0.1}=-1.5J}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Therefore,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{v_f=\sqrt{\dfrac{2×(-1.5)}{1}+{2}^{2}=1m/s}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

The final kinetic energy;

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{K_f=\dfrac{{{mv}^{2}_f}}{2}=\dfrac{1×{1}^{2}}{2}=0.5J}

Similar questions