Math, asked by vimasuraanshi, 2 months ago

Question is attached with image please solve!

Attachments:

Answers

Answered by TheValkyrie
8

Answer:

Value of  x³ - 2x² - 7x + 5 = 16√8 + 49

Step-by-step explanation:

Given:

\sf x=\dfrac{1}{3-\sqrt{8} }

To Find:

The value of x³ - 2x² - 7x + 5

Solution:

By given,

\sf x=\dfrac{1}{3-\sqrt{8} }

Multiply the numerator and denominator with the conjugate,

\sf \implies \dfrac{1}{3-\sqrt{8} } \times \dfrac{3+\sqrt{8} }{3+\sqrt{8} }

Applying the identity (a + b) (a - b) = a² - b₂,

\sf \implies \dfrac{3+\sqrt{8} }{3^2-(\sqrt{8} )^2}

\sf \implies \dfrac{3+\sqrt{8} }{9-8} =3+\sqrt{8}

Now finding the value of x³ - 2x² - 7x + 5,

\sf \implies (3+\sqrt{8} )^3-2\times(3+\sqrt{8} )^2-7\times(3+\sqrt{8})+5

We know that

(a + b)³ = a³ + 3a²b + 3ab² + b³

(a + b)² = a² + 2ab + b²

Applying the identity,

\implies \sf  3^3+3\times 3^2\times \sqrt{8} +3\times 3\times(\sqrt{8} )^2+(\sqrt{8})^3 -2(3^2+2\times 3\times \sqrt{8}+(\sqrt{8} )^2)-21-7\sqrt{8} +5

\sf \implies 27+27\sqrt{8} +72+8\times \sqrt{8} -2(9+6\sqrt{8} +8)-7\sqrt{8} -16

\sf \implies 83+27\sqrt{8} -18-12\sqrt{8} -16-7\sqrt{8}+8\sqrt{8}

\sf \implies 8\sqrt{8}+8\sqrt{8} +49

\sf \implies 16\sqrt{8} +49

Hence the value of  x³ - 2x² - 7x + 5 is 16√8 + 49

Answered by Anonymous
8

Solution :

We have

x =  \frac{1}{3 -  \sqrt{8} }  =  \frac{1}{3 -  \sqrt{8} }  \times  \frac{(3 +  \sqrt{8} )}{(3 +  \sqrt{8}) }  \\  \\  =  \frac{(3 +  \sqrt{8}) }{( {3})^{2}  - ( \sqrt{8}) ^{2}  }  \\  \\  =  \frac{(3 +  \sqrt{8} )}{9 - 8}  \\  \\  = (3 +  \sqrt{8} ).

x = 3 + √8 ⇒ x - 3 = √8

⇒ (x-3)² = (√8)² = 8

⇒ x² + 9 - 6x = 8

⇒ x² - 6x + 1 = 0

∴ x³ - 2x² - 7x + 5

= x (x²- 6x + 1) + 4 (x²-6x+1) +16x+1

= x × 0 + 4 × 0 +16 (3+√8)+1

= 48 + 16√8 + 1 = 49 + 32√2.

Similar questions