Math, asked by kk1000, 1 month ago

Question is in attachment. ​

Attachments:

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) =  {x}^{3} -  {x}^{2} + x + 1

and

\begin{gathered}\begin{gathered}\bf\: g(x) = \begin{cases} &\sf{max \{f(t) \},0 \leqslant t \leqslant x \: for \: 0 \leqslant x \leqslant 1} \\ &\sf{3 - x +  {x}^{2} , \: 1 < x \leqslant 2} \end{cases}\end{gathered}\end{gathered}

Now, Consider

\rm :\longmapsto\:f(x) =  {x}^{3} -  {x}^{2} + x + 1

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}f(x) = \dfrac{d}{dx}[ \:  {x}^{3} -  {x}^{2} + x + 1 \: ]

\rm :\longmapsto\:f'(x) =  {3x}^{2} - 2x + 1

Now, its a quadratic equation and

 \red{\rm :\longmapsto\:Discriminant =  {( - 2)}^{2} - 4(3)(1) = 4 - 12 =  - 8 < 0}

We know, in a quadratic equation, if coefficient of x^2 is positive and Discriminant < 0, it implies quadratic equation is always > 0.

\bf\implies \:f'(x) &gt; 0

\bf\implies \:f(x) \: is \: increasing \: function \: in \: (0,2)

Now, g(x) is defined as

\begin{gathered}\begin{gathered}\bf\: g(x) = \begin{cases} &amp;\sf{f(x) , \:  \: \: 0 \leqslant x \leqslant 1} \\ &amp;\sf{3 - x +  {x}^{2} , \: 1 &lt; x \leqslant 2} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf\: g(x) = \begin{cases} &amp;\sf{ {x}^{3} -  {x}^{2} + x + 1  , \:  \: \: 0 \leqslant x \leqslant 1} \\ &amp;\sf{3 - x +  {x}^{2} , \: 1 &lt; x \leqslant 2} \end{cases}\end{gathered}\end{gathered}

To check the continuity, at x = 1.

\rm :\longmapsto\:g(1) =  {1}^{3} -  {1}^{2} + 1 + 1 = 1 - 1 + 1 + 1 = 2

RHL

 \red{\rm :\longmapsto\:\displaystyle\lim_{x \to 1^+} \: (3 - x +  {x}^{2}) \: }

To evaluate this limit, we use method of Substitution

So, Substitute,

 \red{\rm :\longmapsto\:x = 1 + h, \:  \: as \: x \to \: 1, \:  \: so \: h \to \: 0}

\rm \:  =  \:\displaystyle\lim_{h \to 0}[3 - (1 + h) +  {(1 + h)}^{2}]

\rm \:  =  \:3 - 1 + 1

\rm \:  =  \:3

Thus, we have

\bf\implies \:\boxed{ \tt{ \: g(1) \:  \ne \: \displaystyle\lim_{x \to 1^+}g(x) \: }}

So, function is not continuous at x = 1.

Now, We check differentiability at x = 1

\begin{gathered}\begin{gathered}\bf\: g(x) = \begin{cases} &amp;\sf{ {x}^{3} -  {x}^{2} + x + 1  , \:  \: \: 0 \leqslant x \leqslant 1} \\ &amp;\sf{3 - x +  {x}^{2} , \: 1 &lt; x \leqslant 2} \end{cases}\end{gathered}\end{gathered}

LHD

\rm :\longmapsto\:\displaystyle\lim_{x \to 1^ - } \frac{g(x) - g(1)}{x - 1}

\rm \:  =  \:\displaystyle\lim_{x \to 1^ - } \frac{ {x}^{3} -  {x}^{2} + x + 1 - 2}{x - 1}

\rm \:  =  \:\displaystyle\lim_{x \to 1^ - } \frac{ {x}^{3} -  {x}^{2} + x - 1}{x - 1}

\rm \:  =  \:\displaystyle\lim_{x \to 1^ - } \frac{ {x}^{2} (x-  1) +1( x - 1)}{x - 1}

\rm \:  =  \:\displaystyle\lim_{x \to 1^ - } \frac{ ({x}^{2}  +  1)( x - 1)}{x - 1}

\rm \:  =  \:\displaystyle\lim_{x \to 1^ - } ( {x}^{2} + 1)

\rm \:  =  \:1 + 1

\rm \:  =  \:2

Now, RHD

\rm :\longmapsto\:\displaystyle\lim_{x \to 1^  + } \frac{g(x) - g(1)}{x - 1}

\rm \:  =  \:\displaystyle\lim_{x \to 1^+} \frac{3 - x +  {x}^{2} - 2 }{x - 1}

\rm \:  =  \:\displaystyle\lim_{x \to 1^+} \frac{1 - x +  {x}^{2}}{x - 1}

\rm \:  =  \: \infty

\boxed{ \tt{ \: \:\displaystyle\lim_{x \to 1^ - } \frac{g(x) - g(1)}{x - 1} \:   \ne \: \displaystyle\lim_{x \to 1^ + } \frac{g(x) - g(1)}{x - 1}}}

So, it implies g(x) is not differentiable at x = 1.

Hence,

 \red{\boxed{ \sf{ \: g(x) \: is \: neither \: is \: continuous \: nor \: differentiable \: at \: x = 1}} \: }

Similar questions