Math, asked by facebookkkk, 1 year ago

question is in attachment​

Attachments:

Answers

Answered by mathsdude85
3
\boxed{\underline{\textsf{Solution :}}}

\textsf{Now,}\:\small{\frac{1}{(x-1)(x-2)}+\frac{1}{(x-2)(x-3)}+\frac{1}{(x-3)(x-4)}}

=\small{\frac{(x-1)-(x-2)}{(x-1)(x-2)}+\frac{(x-2)-(x-3)}{(x-2)(x-3)}+\frac{(x-3)-(x-4)}{(x-3)(x-4)}}

=\small{\frac{1}{x-2}-\frac{1}{x-1}+\frac{1}{x-3}-\frac{1}{x-2}+\frac{1}{x-4}-\frac{1}{x-3}}

=-\frac{1}{x-1}+\frac{1}{x-4}

=\frac{-(x-4)+(x-1)}{(x-1)(x-4)}

=\frac{-x+4+x-1}{(x-1)(x-4)}

=\frac{3}{(x-1)(x-4)}

\textsf{Given that,}\:\frac{3}{(x-1)(x-4)}=\frac{1}{6}

\to (x-1)(x-4)=3*6

\to x^{2}-5x+4=18

\to x^{2}-5x-14=0

\to x^{2}-7x+2x-14=0

\to x (x-7)+2 (x-7)=0

\to (x-7)(x+2)=0

\textsf{Either, x - 7 = 0 or, x + 2 = 0}

\textbf{i.e., x = 7 , x = - 3}

\textbf{which is the required solution.}

Anonymous: x will be - 2
Answered by Anonymous
0

Evaluate the functions .

Go on till you reach a quadratic equation .

EXPLANATION :

A quadratic equation can be solved by middle split method .

We will split the middle part and then we will factorise .

After that we can apply the zero product rule and find the value of x .

SOLUTION :

\frac{1}{(x-1)(x-2)}+\frac{1}{(x-2)(x-3)}+\frac{1}{(x-3)(x-4)}=\frac{1}{6}\\\implies \frac{(x-1)-(x-2)}{(x-1)(x-2)}+\frac{(x-2)-(x-3)}{(x-2)(x-3)}+\frac{(x-3)-(x-4)}{(x-3)(x-4)}=\frac{1}{6}\\\implies\frac{1}{x-2}-\frac{1}{x-1}+\frac{1}{x-3}-\frac{1}{x-2}+\frac{1}{x-4}-\frac{1}{x-3}=\frac{1}{6}\\\implies\frac{1}{x-4}-\frac{1}{x-1}=\frac{1}{6}\\\implies \frac{x+4-x-1}{(x-1)(x-4)}=\frac{1}6}\\\implies \frac{3}{(x-1)(x-4)}=\frac{1}{6}

Cross multiply and we will get :

(x-1)(x-4)=6\times3\\\\\implies x^2-4x-x+4=18\\\\\implies x^2-5x+4=18\\\\\implies x^2-5x-14=0\\\\\implies x^2-7x+2x-14=0\\\\\implies x(x-7)+2(x-7)\\\\\implies (x+2)(x-7)=0

Either x is 7 or x is - 2 .

Similar questions