Math, asked by rochanaratakonda, 6 hours ago

Question is in attachment

pls give relevant answer​

Attachments:

Answers

Answered by ajr111
9

Answer:

\textsf{The values of x are :}

\dfrac{1 + i\sqrt{3} }{2}\  , \ \dfrac{1 - i\sqrt{3} }{2} \ , 2 + \sqrt{3}\ , \ 2 - \sqrt{3}

Step-by-step explanation:

Given :

\bigg( x^{2}  + \dfrac{1}{x^2} \bigg) - 5\bigg(x + \dfrac{1}{x} \bigg)  + 6 = 0, \ x \neq 0

To Find :

The value of x

Solution :

Let us Assume,

x + \dfrac{1}{x} = t

Squaring on both sides

\bigg(x + \dfrac{1}{x} \bigg)^2 = t^2

: \implies x^2 + \dfrac{1}{x^{2} }  + 2(x)\bigg(\dfrac{1}{x} \bigg) = t^2

: \implies x^2 + \dfrac{1}{x^{2} }  + 2(\not{x})\bigg(\dfrac{1}{\not{x}} \bigg) = t^2

: \implies x^2 + \dfrac{1}{x^{2} }  + 2= t^2

: \implies x^2 + \dfrac{1}{x^{2} }   = t^2 - 2 \ \ ----[1]

So, now going back to given question,

\bigg( x^{2}  + \dfrac{1}{x^2} \bigg) - 5\bigg(x + \dfrac{1}{x} \bigg)  + 6 = 0

From [1] and our assumption,

: \implies(t^2 - 2) -5t+6=0

: \implies t^2 - 5t + 4 = 0

: \implies t^2 - t - 4t + 4 = 0

: \implies t(t - 1) - 4(t-1) = 0

: \implies (t-1)(t-4) = 0

\therefore \underline{\boxed{\mathbf{ t = 1 \ (or) \  4}}}

But, we have assumed

x + \dfrac{1}{x} = t

So,

x + \dfrac{1}{x} = 1 \ (or) \ 4

  • Case (i)

x + \dfrac{1}{x} = 1

: \implies x^2 + 1 = x

: \implies x^{2}  - x + 1 = 0

\text{We know that, if a$\mathrm{x^2}$ + bx + c = 0, then, }

\boxed{x = \dfrac{-b \pm \sqrt{b^2 - 4ac} }{2a} }

So, for this equation a = 1, b = -1, c = 1

x = \dfrac{-(-1) \pm \sqrt{1- 4(1)(1)} }{2(1)}

: \implies x = \dfrac{1 \pm \sqrt{-3} }{2}

: \implies x = \dfrac{1 \pm i\sqrt{3} }{2} \ \ \ [\text{as i = $\sqrt{-1} $}]

\therefore \underline{\boxed{\mathbf{ x= \dfrac{1 \pm i\sqrt{3} }{2} }}}

  • Case (ii)

x + \dfrac{1}{x} = 4

: \implies x^2 + 1 = 4x

: \implies x^2 -4x + 1 = 0

Here, a = 1, b = -4, c = 1

: \implies x = \dfrac{-(-4) \pm \sqrt{16- 4(1)(1)} }{2(1)}

: \implies x = \dfrac{4 \pm \sqrt{12} }{2}

: \implies x = \dfrac{4 \pm 2\sqrt{3} }{2}

: \implies x = 2 \pm \sqrt{3}

\therefore \underline{\boxed{\mathbf{ x=2 \pm \sqrt3}}}

Thus,

\boxed {x = \dfrac{1 + i\sqrt{3} }{2}\  , \ \dfrac{1 - i\sqrt{3} }{2} \ , 2 + \sqrt{3}\ , \ 2 - \sqrt{3}  }

Hope it helps!!

Similar questions