Math, asked by Anonymous, 7 months ago

Question is in pic

❤plz solve it❤​

Attachments:

Answers

Answered by Anonymous
28

» Question :

Sides of a triangle are in the ratio of 12 : 17 : 25 and it's Perimeter is 540 cm . Find it's area.

» To Find :

The Area of the triangle :

» We Know :

Heron's formula :

\sf{\underline{\boxed{A_{t} = \sqrt{s(s - a)(s - b)(s - c)}}}}

Where,

  • s = Semi-perimeter, i.e,

\sf{s = \dfrac{a + b + c}{2}}

  • a = side of the triangle
  • b = side of the triangle
  • c = side of the triangle

Perimeter of a triangle :

\sf{\underline{\boxed{P_{t} = a + b + c}}}

Where ,

  • a = side of the triangle
  • b = side of the triangle
  • c = side of the triangle

» Concept :

To Find the area of the triangle , first we have to find the the sides of the triangle .

ATQ

Let the side be x .

By using the formula , and putting the value in it ,we get :

\sf{\underline{\boxed{P_{t} = a + b + c}}}

\sf{\Rightarrow 540 = 12x + 17x + 25x}

\sf{\Rightarrow 540 = 12x + 17x + 25x}

\sf{\Rightarrow 540 = 54x}

\sf{\Rightarrow \dfrac{540}{54} = x}

\sf{\Rightarrow \dfrac{\cancel{540}}{\cancel{54}} = x}

\sf{\Rightarrow 10 = x}

Hence ,the value of x is 10 .

Now Putting the value of x in the given sides, i.e

Sides of the triangle :

  • a = 12x \rightarrow 12 \times 10 \rightarrow 120 cm

  • b = 17x \rightarrow 17 \times 10 \rightarrow 170 cm

.

  • c = 25x \rightarrow 25 \times 10 \rightarrow 250 cm

Hence ,the sides of the triangle are ,120 cm ,170 cm and 250 cm.

Now ,by this information we can find the area of the triangle.

» Solution :

  • a = 120 cm
  • b = 170 cm
  • c = 250 cm

Semi-perimeter :

\sf{s = \dfrac{a + b + c}{2}}

Putting the value and by solving it ,we get :

\sf{\Rightarrow s = \dfrac{120 + 170 + 250}{2}}

\sf{\Rightarrow s = \dfrac{540}{2}}

\sf{\Rightarrow s = \dfrac{\cancel{540}}{\cancel{2}}}

\sf{\Rightarrow s = 270 cm}

Area of the triangle :

Formula :

\sf{\underline{\boxed{A_{t} = \sqrt{s(s - a)(s - b)(s - c)}}}}

Now , Substituting the value and solving it ,we get :

\sf{\Rightarrow A_{t} = \sqrt{270(270 - 120)(270 - 170)(270 - 250)}}

\sf{\Rightarrow A_{t} = \sqrt{270 \times 150 \times 100 \times 20}}

\sf{\Rightarrow A_{t} = \sqrt{81000000}}

\sf{\Rightarrow A_{t} = 9000 m^{2}}

Hence ,the area of the triangle is 9000m².

» Additional information :

  • Area of a right-angled triangle = ½ab

  • Area of an equilateral triangle = \dfrac{\sqrt{3}a^{2}}{4}

  • Area of a rectangle = legth × breadth

  • Area of a square = (side)²
Answered by Anonymous
31

SOLUTION :-

Let a common be x.

So, The Sides Will be :-

12x, 17x, 25x.

According To The Question,

Perimeter = Sum Of A Triangle = 540cm.

So,

12x + 17x + 25x = 540.

☞ 54x = 540.

☞ x = 540/54.

☞ x = 10.

Hence, Value Of X = 10.

The Sides Of Triangle Are :-

  • 12x = 120
  • 17x = 170
  • 25x = 250.

Now, Calculating Area.

We will Use Heron's Formula.

First, Calculate Semi Perimeter.

Semi-Perimeter = a+b+c/2

Here,

a = 120,

b = 170,

c = 250.

120+170+250/2 = 270.

Heron's Formula :- √s(s-a)(s-b)(s-c)

Put The Values.

☞ √270(270-120)(270-170)(270-250).

☞ √270 × 150 × 100 × 20.

☞ 9000m²

Hence, Area = 9000m²

Similar questions