Math, asked by Vamprixussa, 1 year ago

║⊕QUESTION⊕║
Mathematics is the most beautiful and most powerful creation of the human spirit

CLASS 11
SEQUENCES AND SERIES

If the sum of series 2, 5, 8, 11, ... is 60100, then find the value of n.

Answers

Answered by RvChaudharY50
3

Answer:

60100 = n/2 (4+(n-1)3)

120200 = n(3n+1)

3n² + n - 120200 = 0

3n² + 601n - 600n - 120200 = 0

3n² + 601n - 600n - 120200 = 0n(3n + 601) - 200 (3n + 601) = 0

3n² + 601n - 600n - 120200 = 0n(3n + 601) - 200 (3n + 601) = 0(n - 200) (3n + 601) = 0

n = 200 (Ans.)

Answered by Anonymous
7

 \large \underline{ \underline{ \sf \: Solution : \:  \:  \: }}

Given ,

 \starFirst term = 2

 \starCommon difference = 3

 \starSum of nth term = 60100

We know that ,

 \large  \sf  \fbox{\fbox{S_{n} =  \frac{n}{2}  \bigg(2a + (n - 1)d \bigg)}}

 \sf \implies 60100 =  \frac{n}{2} (2 \times 2 + (n - 1)3) \\  \\ \sf \implies 120200 = n(4 + 3n - 3) \\  \\ \sf \implies 120200 = n(1 + 3n) \\  \\ \sf \implies 120200 = n + 3 {n}^{2} \\  \\ \sf \implies 3 {n}^{2}   + n + 120200 = 0\\  \\ \sf \implies 3 {n}^{2} + 601n - 600n - 120200 = 0 \\  \\  \sf \implies</p><p>n(3n + 601) - 200 (3n + 601) = 0 \\  \\ \sf \implies </p><p>(n - 200) (3n + 601) = 0 \\  \\  \sf \implies </p><p>n = 200 \:   \: or   \: \: n =  -  \frac{601}{3}    \:  \: \{ignore \: negative \: value \: of \: n \}

 \thereforeThe required value of n is 200

Similar questions