Math, asked by yashvi612008, 4 months ago

Question no 12 . The difference between compound interest and simple interest at 5 percent per annum in 2 years ₹30 find the sum

Attachments:

Answers

Answered by pravindoshi
1

Answer:

\huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \: \: SOLUTION \: \: } \mid}}}}}

∣SOLUTION∣

\begin{gathered} \mathfrak{Suppose,} \\ \: \: \: \: \mathtt{ \: \: \: \: \: \: The \: \: sum \: \: is = P} \\ \\ \underline{ \mathfrak{ \: Given, \: }} \\ \\ \: \: \: \: \mathtt{Rate \: \: of \: \: interest, r = 5 \% \: p.a.} \\ \\ \: \: \: \: \mathtt{No. \: \: of \: \: years, n = 2 \: \: years.} < /p > < p > \end{gathered}

Suppose,

Thesumis=P

Given,

Rateofinterest,r=5%p.a.

No.ofyears,n=2years.</p><p>

\begin{gathered} \underline{ \mathfrak{ \: \: We \: \: know \: \: that,}} \\ \\ \mathtt{S.I. = \frac{P \times r \times n}{100} } \\ \\ \mathtt{ = \frac{P \times 5 \times 2}{100} } \\ \\ \mathtt{ = \frac{P \times 10}{100} } \\ \\ \mathtt{ = \frac{P}{10} }\end{gathered}

Weknowthat,

S.I.=

100

P×r×n

=

100

P×5×2

=

100

P×10

=

10

P

\begin{gathered} \underline{ \mathfrak{ \: \: Again, \: }} \\ \\ \mathtt{C.I. = A - P } \\ \\ \mathtt{ = P(1 + \frac{r}{100}) {}^{n} - P } \\ \\ \mathtt{ = P \:[ (1 + \frac{r}{100}) {}^{n} - 1 ] } \\ \\ \mathtt{ = P \: [(1 + \frac{5}{100} ) {}^{2} - 1] } \\ \\ \mathtt{ = P \times [( \frac{105}{100} ) {}^{2} - 1 ] } \\ \\ \mathtt{ = P \times [( \frac{11025}{10000}) - 1 ]} \\ \\ \mathtt{ = P \times ( \frac{11025 - 10000}{10000} )} \\ \\ \mathtt{ = P \times \frac{1025}{10000} }\end{gathered}

Again,

C.I.=A−P

=P(1+

100

r

)

n

−P

=P[(1+

100

r

)

n

−1]

=P[(1+

100

5

)

2

−1]

=P×[(

100

105

)

2

−1]

=P×[(

10000

11025

)−1]

=P×(

10000

11025−10000

)

=P×

10000

1025

\begin{gathered}\mathfrak{Now, \: } \\ \: \: \: \: \: \: \: \: \underline{ \mathfrak{We \: \: have \: \: given,}} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \bold{Difference \: \: between \: \: Compound \: \: } \\ \bold{Interest \: \: and \: \: Simple \: \: Interest \: \: is \: \: Rs. 30.}\end{gathered}

Now,

Wehavegiven,

DifferencebetweenCompound

InterestandSimpleInterestisRs.30.

\begin{gathered} \underline{ \bold{ \: \: A.T.Q., \: \: }} \\ \\ \: \: \: \: \: \mathtt{C.I. - S.I. = 30 } \\ \\ \mathtt{\Rightarrow P \times \frac{1025}{10000} - \frac{P}{10} = 30}\: \\ \\ \mathtt{ \Rightarrow \frac{1025 \times \: P -1000 \times \: P }{10000} = 30 } \\ \\ \mathtt{\Rightarrow \frac{25 \times \: P }{10000} = 30} \\ \\ \mathtt{\Rightarrow 25 \times \: P = 300000} \\ \\ \mathtt{\Rightarrow P = \frac{300000}{25} } \\ \\ \mathtt{ \therefore \: \: P = 12000}\end{gathered}

A.T.Q.,

C.I.−S.I.=30

⇒P×

10000

1025

10

P

=30

10000

1025×P−1000×P

=30

10000

25×P

=30

⇒25×P=300000

⇒P=

25

300000

∴P=12000

\begin{gathered} \bold{Hence, } \\ \bold{ < /p > < p > \: \: \: \: \: \: \: The \: \: sum \: \: of \: \: money = \underline {\red{Rs. \: 12000}}} < /p > < p > \end{gathered}

Hence,

</p><p>Thesumofmoney=

Rs.12000

</p><p>

\huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \: \: VERIFICATION \: \: } \mid}}}}}

∣VERIFICATION∣

\begin{gathered} \underline{ \mathfrak{ \: \: We \: \: have, \: \: }} \\ \\ \mathtt{P = Rs. 12000} \\ \\ \mathtt{S.I. = \frac{ P}{10} } \\ \\ \mathtt{ = \frac{12000}{10} } \\ \\ \mathtt{ = 1200}\end{gathered}

Wehave,

P=Rs.12000

S.I.=

10

P

=

10

12000

=1200

\begin{gathered} \underline{ \mathfrak{ \: \: < /p > < p > Again, \: }} \\ \\ \mathtt{ < /p > < p > < /p > < p > C.I. = P \times \frac{1025}{10000} } \\ \\ \mathtt{ = 12000 \times \frac{1025}{10000} } \\ \\ \mathtt{ = 12 \times \frac{1025}{10} } \\ \\ \mathtt{ = \frac{12300}{10} } \\ \\ \mathtt{ = 1230}\end{gathered}

</p><p>Again,

</p><p></p><p>C.I.=P×

10000

1025

=12000×

10000

1025

=12×

10

1025

=

10

12300

=1230

\begin{gathered} \mathfrak{Now,} \\ \\ \mathtt{C.I. - S.I. =1230 - 1200 = \underline{30} }\end{gathered}

Now,

C.I.−S.I.=1230−1200=

30

Similar questions