Math, asked by nandhu2502, 4 months ago

question no. 13 plz solve.​

Attachments:

Answers

Answered by Anonymous
11

Solution:-

Given

 \rm \to \: S_{n}  = 1 + q +  {q}^{2}  + ......... +  {q}^{n}

 \rm \to \: T_{n} = 1 +  \bigg( \dfrac{q + 1}{2}  \bigg) +  \bigg( \dfrac{q + 1}{2}  \bigg)^{2}  + ........ +  \bigg( \dfrac{q + 1}{2}  \bigg)^{n}

 \rm \to \: q \: is \: real \: number \: and \: q \not = 0

 \rm \to \:  ^{101} C_{1} +  ^{101} C_{2}.S_{1} + ...... +  ^{101} C_{101}.S _{100} =  \alpha T_{100}

To find

 \to \:  \rm \: to \: find \: the \: \: value \: of \: alpha( \alpha )

Now take

\rm \to \: S_{n}  = 1 + q +  {q}^{2}  + ......... +  {q}^{n}

So total number of term is ( n + 1 )

We can write as

 \rm \to \:  \dfrac{q^{n + 1}  - 1}{q - 1}

Now take

\rm \to \: T_{n} = 1 +  \bigg( \dfrac{q + 1}{2}  \bigg) +  \bigg( \dfrac{q + 1}{2}  \bigg)^{2}  + ........ +  \bigg( \dfrac{q + 1}{2}  \bigg)^{n}

Again total number of term is ( n + 1 )

 \rm \to \:  \dfrac{ \bigg( \dfrac{q + 1}{2}  \bigg)^{n + 1}  - 1}{ \bigg( \dfrac{q + 1}{2} \bigg) - 1 }

Now

 \rm \to \:  ^{101} C_{1} +  ^{101} C_{2}.S_{1} + ...... +  ^{101} C_{101}.S _{100} =  \alpha T_{100}

We can write

 \rm \to \alpha T_{101} =  \sum \limits_{r= 1}^{100} \: ^{101} C_rS_{r - 1}

When we take r - 1

 \rm \to\sum \limits_{r -  1}^{101} \: ^{101} C_r \bigg( \dfrac{ {q}^{r - 1} }{q - 1}  \bigg)

\rm \to \dfrac{1}{q - 1}  \bigg(\sum \limits_{r -  1}^{101}  \: ^{101} C_{r} {q}^{r}  - \sum \limits_{r -  1}^{101}  \:  ^{101} C_{r} \bigg)

 \rm \to \:  \dfrac{1}{q - 1}  \bigg \{(1 + q) {}^{101 }  -1  -  ({2}^{100}  - 1)  \bigg\}

 \rm \to \:  \dfrac{1}{q - 1}  \bigg \{(1 + q) {}^{101}  -  {2}^{101}  \bigg \}

Now we get

\rm \to \:  \dfrac{ \bigg( \dfrac{q + 1}{2}  \bigg)^{n + 1}  - 1}{ \bigg( \dfrac{q + 1}{2} \bigg) - 1 }

Now put the value n = 100

 \rm \to \:  \alpha  \bigg( \dfrac{ \bigg( \dfrac{q + 1}{2}  \bigg) {}^{101}  - 1}{ \dfrac{q + 1}{2} - 1 }  \bigg) =  \dfrac{(1 + q) ^{101}  -  {2}^{101} }{q - 1}

By taking lcm we get

 \rm \to \:  \dfrac{2}{ {2}^{101} }  \alpha  \bigg( \dfrac{(q + 1) {}^{101} -  {2}^{101}  }{(q + 1) - 2}  \bigg) =  \dfrac{(1 + q) {}^{101} -  {2}^{101}  }{q - 1}

\rm \to \:  \dfrac{2}{ {2}^{101} }  \alpha  \bigg( \dfrac{(q + 1) {}^{101} - {2 }^{101}  }{(q  - 1) }  \bigg) =  \dfrac{(1 + q) {}^{101} -  {2}^{101}  }{q - 1}

\rm \to \:  \dfrac{2}{ {2}^{101} }  \alpha   \cancel{\bigg( \dfrac{(q + 1) {}^{101} -  {2}^{101}  }{(q + 1) - 2}  \bigg) }=  \cancel{ \dfrac{(1 + q) {}^{101} -  {2}^{101}  }{q - 1} }

 \rm \to \:  \alpha  \bigg( \dfrac{1}{ {2}^{100} }  \bigg) = 1

 \rm \to \:  \alpha  =  {2}^{100}

Answer:- Option A is correct

Answered by mahek77777
12

Option A is correct............!

Similar questions