Math, asked by AnshChaturvedi2010, 5 months ago

Question No. 19
The base of a parallelogram is twice its height. If the area of the parallelogram is 72 sq. cm, then find its
height.​

Answers

Answered by sethrollins13
39

Given :

  • Base of a parallelogram is twice its Height .
  • Area of Parallelogram is 72 cm² .

To Find :

  • Height of Parallelogram .

Solution :

\longmapsto\tt{Let\:Height\:be=x}

As Given that Base of a parallelogram is twice its Height . So ,

\longmapsto\tt{Base=2x}

Using Formula :

\longmapsto\tt\boxed{Area\:of\:Parallelogram=b\times{h}}

Putting Values :

\longmapsto\tt{72=2x\times{x}}

\longmapsto\tt{72=2{x}^{2}}

\longmapsto\tt{\cancel\dfrac{72}{2}={x}^{2}}

\longmapsto\tt{36={x}^{2}}

\longmapsto\tt{\sqrt{36}=x}

\longmapsto\tt\bf{6=x}

Therefore :

\longmapsto\tt{Height\:of\:Parallelogram=x}

\longmapsto\tt\bf{6\:cm}

\longmapsto\tt{Base\:of\:Parallelogram=2(6)}

\longmapsto\tt\bf{12\:cm}

_______________________

VERIFICATION :

\longmapsto\tt{72=2x\times{x}}

\longmapsto\tt{72=2(6)\times{6}}

\longmapsto\tt{72=12\times{6}}

\longmapsto\tt\bf{72=72}

HENCE VERIFIED


BrainlyPopularman: Nice ♡
sethrollins13: Thanku :D
Answered by itzcutiemisty
22

Answer:

6 cm

Step-by-step explanation:

\underline{\bigstar\:\textsf{Given:}}

  • Base of a parallelogram is twice its height.
  • Area of parallelogram = 72 cm²

\underline{\bigstar\:\textsf{To\:find:}}

  • Its height = ?

\underline{\bigstar\:\textsf{Solution:}}

First, let the height be h.

Now, it is saying "The base of a parallelogram is twice its height."

\implies Base = 2h

We remember the area of a parallelogram i.e, \blue{\sf{base\:\times\:height}}

(We are given with the area too, put the values to find h)

\implies 72 = 2h × h

\implies 72 = 2h²

\implies\:\sf{\dfrac{72}{2}\:=\:h^2}

\implies\:\sf{\sqrt{36}\:=\:h}

\implies 6 = h

\sf{\underline{\boxed{\large{\mathsf{\therefore \:It's\:height\:is\:6\:cm}}}}}

Hope it helped you dear...

Similar questions