Math, asked by harshshendexz, 2 months ago

Question No. 5. If log (xy³) = 1 and log (x²y) = 1, then log (xy) =​

Answers

Answered by amansharma264
5

EXPLANATION.

⇒ ㏒(xy³) = 1. - - - - - (1).

⇒ ㏒(x²y) = 1. - - - - - (2).

As we know that,

We can evaluate equation one by one, we get.

From equation (1), we get.

⇒ ㏒(xy³) = 1. - - - - - (1).

As we know that,

Formula of :

⇒ ㏒ₐMN = ㏒ₐM + ㏒ₐN.

Using this formula in the equation, we get.

⇒ ㏒(x) + ㏒(y³) = 1.

⇒ ㏒(x) + 3㏒(y) = 1. - - - - - (3).

From equation (2), we get.

⇒ ㏒(x²y) = 1.

As we know that,

Formula of :

⇒ ㏒ₐMN = ㏒ₐM + ㏒ₐN.

Using this formula in the equation, we get.

⇒ ㏒(x²) + ㏒(y) = 1.

⇒ 2㏒(x) + ㏒(y) = 1. - - - - - (4).

From equation (3) and (4), we get.

⇒ ㏒(x) + 3㏒(y) = 1. - - - - - (3).

⇒ 2㏒(x) + ㏒(y) = 1. - - - - - (4).

Multiply equation (3) by 2.

Multiply equation (4) by 1.

⇒ ㏒(x) + 3㏒(y) = 1. - - - - - (3).  x  2.

⇒ 2㏒(x) + ㏒(y) = 1. - - - - - (4).  x  1.

We get,

⇒ 2㏒(x) + 6㏒(y) = 2. - - - - - (5).

⇒ 2㏒(x) + ㏒(y) = 1. - - - - - (6).

Subtract equation (5) and (6), we get.

⇒ 2㏒(x) + 6㏒(y) = 2. - - - - - (5).

⇒ 2㏒(x) + ㏒(y) = 1. - - - - - (6).

⇒ -         -            -

We get,

⇒ 5㏒(y) = 1.

⇒ ㏒(y) = 1/5.

Put the value of ㏒(y) = 1/5 in equation (3), we get.

⇒ ㏒(x) + 3㏒(y) = 1.

⇒ ㏒(x) + 3(1/5) = 1.

⇒ ㏒(x) = 1 - 3/5.

⇒ ㏒(x) = (5 - 3)/5.

⇒ ㏒(x) = 2/5.

To find :

⇒ ㏒(xy).

As we know that,

We can write equation as,

⇒ ㏒(xy) = ㏒(x) + ㏒(y).

⇒ ㏒(xy) = 2/5 + 1/5.

⇒ ㏒(xy) = 3/5.

                                                                                                                         

MORE INFORMATION.

Properties of logarithms.

Let M and N arbitrary positive number such that a > 0, a ≠ 1, b > 0, b ≠ 1 then,

(1) = ㏒ₐMN = ㏒ₐM + ㏒ₐN.

(2) = ㏒ₐ(M/N) = ㏒ₐM - ㏒ₐN.

(3) = ㏒ₐN^(α) = α㏒ₐN (α any real number).

(4) = ㏒ₐ^(β)N^(α) = α/β ㏒ₐN (α ≠ 0 and β ≠ 0).

(5) = ㏒ₐN = ㏒_{b}N/㏒_{b}a.

(6) = ㏒_{b} a . ㏒ₐ b = 1 ⇒ ㏒_{b}a = 1/㏒ₐb.

(7) = e^(㏑a)ˣ = aˣ.

Answered by Atlas99
9

REFER TO ATTACHMENT

THANKS!!

Attachments:
Similar questions