Question no.6 plz...
Answers
So,
Given :- ABCD is a quadrilateral.
To prove :- AB+ BC + CD + DA < 2(AC + BD)
Proof:- In triangle AOB,
=> AO + BO > AB ---1 { sum of two sides of a triangle is always greater than its third side.}
Similarly,
In triangle AOD,
=> AO + DO > DA ---------- 2
In Triangle BOC,
=> BO + CO > BC ------- 3
In triangle COD,
=> CO + DO > CD -------- 4
Adding all four equations :-
=> AO + BO + AO + DO + BO + CO + CO + DO > AB + BC + CD + DA
=> AO + AO + BO + BO + CO + CO + DO + DO > AB + BC + CD + DA
=> 2( AO + CO + BO + DO) > AB + BC + CD + DA
=> 2 ( AC + BD) > AB + BC + CD + DA
OR,
We will prove this by using a property of a triangle i.e. Sum of two sides of a triangle is always greater than its third side.
So,
Given :- ABCD is a quadrilateral.
To prove :- AB+ BC + CD + DA < 2(AC + BD)
Proof:- In triangle AOB,
=> AO + BO > AB ---1 { sum of two sides of a triangle is always greater than its third side.}
Similarly,
In triangle AOD,
=> AO + DO > DA ---------- 2
In Triangle BOC,
=> BO + CO > BC ------- 3
In triangle COD,
=> CO + DO > CD -------- 4
Adding all four equations :-
=> AO + BO + AO + DO + BO + CO + CO + DO > AB + BC + CD + DA
=> AO + AO + BO + BO + CO + CO + DO + DO > AB + BC + CD + DA
=> 2( AO + CO + BO + DO) > AB + BC + CD + DA
=> 2 ( AC + BD) > AB + BC + CD + DA
OR,
\bold{ AB+ BC+ CD+ DA< 2( AC+ BD)}AB+BC+CD+DA<2(AC+BD)
\bold{ Hence \:\:Proved}HenceProved