Math, asked by ashkamsultan, 11 months ago

Question no.7 of this image

Plzzz... urgent

Attachments:

Answers

Answered by adiladil
1

Step-by-step explanation:

1-cosec^2 A (tan^2A)

=cot^2×tan^2A

=1

Answered by SparklingBoy
3

Answer:

We can calculate the value of given by breaking into sin and cos trigonometric ratios.

Following properties will be used:-)

tan^2 A = \frac{{sin}^{2}A}{{cos}^{2}A}\\\\cosec^2 A=\frac{1}{{sin}^{2}A}\\\\1-{sin}^{2}A={cos}^{2}A

Value of

(1 -  {cosec}^{2} A) {tan}^{2} A

can be calculated as follows

(1 -  {cosec}^{2} A) {tan}^{2} A \\  \\  = (1 -  \frac{1}{ {sin}^{2} A} ) \frac{ {sin}^{2}A }{ {cos}^{2} A}  \\  \\  =  \frac{ {sin}^{2} A}{ {cos}^{2} A}  -  \frac{1}{ {cos}^{2} A}  \\  \\  =  \frac{ {sin}^{2} A- 1}{ {cos}^{2} A}  \\  \\  \frac{ - (1 -  {sin}^{2} A)}{ {cos}^{2}A }  \\  \\  =   \frac{ -  {cos}^{2} A}{ {cos}^{2} A}  \\  \\  =  - 1

OR

As we know that

cosec^2 A -1 = cot ^2 A \\ and \\ cot^2 A \times tan^2 A =1

(1 -  {cosec}^{2} A) {tan}^{2} A \\ \\ = -cot^2 A \times tan^2 A \\ \\ = -1

Similar questions