Math, asked by devanshlodhamaowf2z6, 1 year ago

question no. 73 and 74

Attachments:

Answers

Answered by siddhartharao77
1
73. Given a + b + c = 0

      Then a + b = -c  ----- (1)

  On cubing both sides, we get

   (a+b)^3 = (-c)^3

  a^3 + b^3 + 3ab(a+b) = -c^3

   a^3 + b^3 + 3ab(-c) = -c^3

   a^3 + b^3 - 3abc = -c^3

   a^3 + b^3 + c^3 = 3abc

  (a^3 + b^3 + c^3)/(abc) = 3

  (a^2/bc + b^2/ca + c^2/ab) = 3.


74) Given a + b + c = 5  -------- (1)

      Given ab + bc + ca = 10  ----- (2).


We know that a^3 + b^3 + c^3 - 3abc = (a + b + c)^3 - 3(a+b+c)(ab+bc+ca)

                                                              = (5)^3 - 3(5)(10)

                                                              = 125 - 150

                                                              = -25.


Therefore a^3 + b^3 + c^3 - 3abc = -25.


Hope this helps!              

siddhartharao77: Sorry ur formula is correct
siddhartharao77: I thought ur asking question no 73.
siddhartharao77: a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
devanshlodhamaowf2z6: ya
siddhartharao77: (a+b+c)^2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
devanshlodhamaowf2z6: i know that one
siddhartharao77: Okkk
devanshlodhamaowf2z6: 2 more questions please...
siddhartharao77: Now i have some work..Anyways i will try now or later
devanshlodhamaowf2z6: ok☺☺
Similar questions