Question Number : 12
Please Full Solution.
Attachments:
Answers
Answered by
42
Answer :
Now,
1/(a + b + x) = 1/a + 1/b + 1/x
⇒ 1/(a + b + x) - 1/x = 1/a + 1/b
⇒ {x - (a + b + x)}/{x (a + b + x) = (b + a)/ab
⇒ (x - a - b - x)/{x (a + b + x)} = (b + a)/ab
⇒ (- a - b)/{x (a + b + x)} = (a + b)/ab
⇒ - (a + b)/{x (a + b + x)} = (a + b)/ab
⇒ - 1/{x (a + b + x)} = 1/ab, cancelling (a + b) from both sides
⇒ x (a + b + x) = - ab, by cross multiplication
⇒ x (a + b + x) + ab = 0
⇒ ax + bx + x² + ab = 0
⇒ x² + ax + bx + ab = 0,
which is the required simplified form of the given equation.
[Note : Here, both (ab) and (a + b) are non-zero]
Further, we proceed to solve the equation.
Now, x² + ax + bx + ab = 0
⇒ x (x + a) + b (x + a) = 0
⇒ (x + a) (x + b) = 0
∴ either x + a = 0 or, x + b = 0
⇒ x = - a, - b
∴ the required solution of the given equation be
x = - a, - b
Hope it helps!
Now,
1/(a + b + x) = 1/a + 1/b + 1/x
⇒ 1/(a + b + x) - 1/x = 1/a + 1/b
⇒ {x - (a + b + x)}/{x (a + b + x) = (b + a)/ab
⇒ (x - a - b - x)/{x (a + b + x)} = (b + a)/ab
⇒ (- a - b)/{x (a + b + x)} = (a + b)/ab
⇒ - (a + b)/{x (a + b + x)} = (a + b)/ab
⇒ - 1/{x (a + b + x)} = 1/ab, cancelling (a + b) from both sides
⇒ x (a + b + x) = - ab, by cross multiplication
⇒ x (a + b + x) + ab = 0
⇒ ax + bx + x² + ab = 0
⇒ x² + ax + bx + ab = 0,
which is the required simplified form of the given equation.
[Note : Here, both (ab) and (a + b) are non-zero]
Further, we proceed to solve the equation.
Now, x² + ax + bx + ab = 0
⇒ x (x + a) + b (x + a) = 0
⇒ (x + a) (x + b) = 0
∴ either x + a = 0 or, x + b = 0
⇒ x = - a, - b
∴ the required solution of the given equation be
x = - a, - b
Hope it helps!
preeti1960p9651m:
thanx
Answered by
18
_______________________
• Simplifying the following equation :
1 / ( a + b + x ) = 1 / a + 1 / b + 1 / x
=> 1 / ( a + b + x ) - 1 / x = 1 / a + 1 / b
=> ( x - a - b - x ) / x ( a + b + x ) = ( b + a ) / ab
=> - ( a + b ) / x ( a + b + x ) = ( a + b ) / ab
=> - 1 / ax + bx + x² = 1 / ab
=> ax + bx + x² = - ab
=> ax + bx + x² + ab = 0
=> ax + ab + x² + bx = 0
=> a ( x + b ) + x ( x + b ) = 0
=> ( x + b ) + ( a + x ) = 0
Now ,
•°• either , ( x + b ) = 0 or , ( a + x ) = 0
x = - b x = - a
So , x = - a , - b [ ★ Required answer ]
●▬▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬▬●
Similar questions
Social Sciences,
7 months ago
Computer Science,
7 months ago
Math,
1 year ago
Math,
1 year ago
Hindi,
1 year ago