Question number 18 pls help tommorow is my exam
Attachments:
Answers
Answered by
2
2ab = 2{SinACosA + SinACosB + SinBCosA + SinBCosB}
2ab = 2{Sin(A + B) + SinACosA + SinBCosB}
2ab = 2Sin(A + B) + Sin2A + Sin2B
2ab = 2Sin(A + B) + 2Sin(A + B)Cos(A - B)
2ab = 2Sin(A + B){1 + Cos(A - B)}
a² + b² = 2 + 2(SinASinB + CosACosB)
a² + b² = 2{1 + Cos(A - B)}
⇒ = Sin(A + B)
identities used :
- SinACosB + CosASinB = Sin(A + B)
- 2SinACosA = Sin2A
- SinA + SinB = 2Sin(A + B)/2 × Cos(A + B)/2
- CosACosB + SinASinB = Cos(A - B)
Similar questions