Math, asked by shivajee44444, 1 month ago

question number 51
see attachment

Attachments:

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\tt{\left(sec\,\theta-cosec\,\theta\right)\left(1+tan\,\theta+cot\,\theta\right)}

\sf{=\left(\dfrac{1}{cos\,\theta}-\dfrac{1}{sin\,\theta}\right)\left(1+\dfrac{sin\,\theta}{cos\,\theta}+\dfrac{cos\,\theta}{sin\,\theta}\right)}

\sf{=\left(\dfrac{sin\,\theta-cos\,\theta}{sin\,\theta\,cos\,\theta}\right)\left(\dfrac{sin\,\theta\,cos\,\theta+sin^2\,\theta+cos^2\,\theta}{sin\,\theta\,cos\,\theta}\right)}

\sf{=\left(\dfrac{sin\,\theta-cos\,\theta}{sin\,\theta\,cos\,\theta}\right)\left(\dfrac{1+sin\,\theta\,cos\,\theta}{sin\,\theta\,cos\,\theta}\right)}

\sf{=\left\{\dfrac{(sin\,\theta-cos\,\theta)(1+sin\,\theta\,cos\,\theta)}{sin^2\,\theta\cdot\,cos^2\,\theta}\right\}}

\sf{=\left\{\dfrac{sin\,\theta-cos\,\theta+sin^2\,\theta\,cos\,\theta-sin\,\theta\,cos^2\,\theta}{sin^2\,\theta\cdot\,cos^2\,\theta}\right\}}

\sf{=\left\{\dfrac{sin\,\theta-sin\,\theta\,cos^2\,\theta-cos\,\theta+sin^2\,\theta\,cos\,\theta}{sin^2\,\theta\cdot\,cos^2\,\theta}\right\}}

\sf{=\left\{\dfrac{sin\,\theta(1-cos^2\,\theta)-cos\,\theta(1-sin^2\,\theta)}{sin^2\,\theta\cdot\,cos^2\,\theta}\right\}}

\sf{=\left\{\dfrac{sin\,\theta\cdot\,sin^2\,\theta-cos\,\theta\cdot\,cos^2\,\theta}{sin^2\,\theta\cdot\,cos^2\,\theta}\right\}}

\sf{=\left\{\dfrac{sin^3\,\theta-cos^3\,\theta}{sin^2\,\theta\cdot\,cos^2\,\theta}\right\}}

\sf{=\dfrac{sin^3\,\theta}{sin^2\,\theta\cdot\,cos^2\,\theta}-\dfrac{cos^3\,\theta}{sin^2\,\theta\cdot\,cos^2\,\theta}}

\sf{=\dfrac{sin\,\theta}{cos^2\,\theta}-\dfrac{cos\,\theta}{sin^2\,\theta}}

\sf{=\dfrac{1}{cos\,\theta}\cdot\,\dfrac{sin\,\theta}{cos\,\theta}-\dfrac{1}{sin\,\theta}\cdot\dfrac{cos\,\theta}{sin\,\theta}}

\sf{=sec\,\theta\cdot\,tan\,\theta-cosec\,\theta\cdot\,cot\,\theta}

Answered by mathdude500
3

Given Question :-

Prove that

 \sf \:(sec\theta  - cosec\theta )(1 + tan\theta  + cot\theta ) = sec\theta tan\theta  - cosec\theta cot\theta

 \red{\large\underline{\sf{Solution-}}}

Consider LHS

\rm :\longmapsto\:\sf \:(sec\theta  - cosec\theta )(1 + tan\theta  + cot\theta )

We know,

\boxed{ \tt{ \: secx =  \frac{1}{cosx}}} \:  \:  \:  \:  \: \boxed{ \tt{ \: cosecx =  \frac{1}{sinx} }} \\  \\ \boxed{ \tt{ \: tanx =  \frac{sinx}{cosx}}} \: \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \tt{ \: cotx =  \frac{cosx}{sinx}}} \\  \\

So, on substituting these Identities, we get

\rm \:  =  \: \bigg[\dfrac{1}{cos\theta } - \dfrac{1}{sin\theta }  \bigg]\bigg[1 + \dfrac{sin\theta }{cos\theta } + \dfrac{cos\theta }{sin\theta }  \bigg]

\rm \:  =  \: \bigg[\dfrac{sin\theta  - cos\theta }{sin\theta  \: cos\theta } \bigg]\bigg[\dfrac{sin\theta cos\theta  +  {sin}^{2} \theta  +  {cos}^{2} \theta }{sin\theta  \: cos\theta } \bigg]

We know,

\purple{\boxed{ \tt{ \: (x - y)( {x}^{2} +  {y}^{2}  + xy) =  {x}^{3} -  {y}^{3} \: }}}

So, using this identity, we get

\rm \:  =  \: \dfrac{ {sin}^{3} \theta  -  {cos}^{3} \theta }{ {sin}^{2}\theta \:  {cos}^{2}\theta }

\rm \:  =  \: \dfrac{ {sin}^{3} \theta}{ {sin}^{2}\theta \:  {cos}^{2}\theta }  - \dfrac{ {cos}^{3} \theta }{ {sin}^{2} \theta  \:  {cos}^{2}\theta  }

\rm \:  =  \: \dfrac{sin\theta }{ {cos}^{2} \theta }  - \dfrac{cos\theta }{ {sin}^{2} \theta }

\rm \:  =  \: \dfrac{sin\theta }{ cos\theta  \times cos\theta }  - \dfrac{cos\theta }{ sin\theta  \times sin\theta  }

\rm \:  =  \: \dfrac{sin\theta }{cos\theta }  \times \dfrac{1}{cos\theta }  - \dfrac{cos\theta }{sin\theta }  \times \dfrac{1}{sin\theta }

\rm \:  =  \: tan\theta  \: sec\theta  \:  -  \: cot\theta  \: cosec\theta

Hence,

\boxed{ \tt{ \: \sf \:(sec\theta  - cosec\theta )(1 + tan\theta  + cot\theta ) = sec\theta tan\theta  - cosec\theta cot\theta}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions
Math, 9 months ago