Math, asked by ravimishra19799, 5 months ago

question number is HCF of 192 1100 4444​

Answers

Answered by ItzLoveHunter
49

\huge\mathrm\red{Answer}

~~~~~~~~~~\sf\red{ HCF \:of \:192}

[tex]\begin{array}{r | l}2 & 192 \\ \cline{2-2} 2 & 96 \\ \cline{2-2} 2 & 48 \\ \cline{2-2} 2 & 24 \\ \cline{2-2} 2 & 12 \\ \cline{2-2} 2 & 6 \\ \cline{2-2} 3 & 3 \\ \cline{2-2} & 1 \end{array} [/tex]

\sf\red{ 2 × 2 × 2 × 2 × 2 × 2 × 3 × 1 }

\sf\red{:⟹ 2^{6} × 3 }

~~~~~~~~~~\sf\orange{ HCF \:of \:1100}

\begin{array}{r | l} 2 & 1100 \\ \cline{2-2} 2 & 550 \\ \cline{2-2} 5 & 125 \\ \cline{2-2} 5 & 25 \\ \cline{2-2} 5 & 5 \\ \cline{2-2} & 1 \end{array}

\sf\orange{ 2 × 2 × 5 × 5 × 5 × 1 }

\sf\orange{:⟹ 2^{2} × 5^{3} }

~~~~~~~~~~\sf\green{ HCF \:of \:4444}

\begin{array}{r | l}2 & 4444 \\ \cline{2-2}2 & 2222 \\ \cline{2-2}11 & 1111 \\ \cline{2-2}101 & 101 \\ \cline{2-2} & 1  \end{array}

\sf\green{ 2 × 2 × 11 × 101 × 1}

\sf\green{:⟹ 2^{2} × 11 × 101 }

\sf{192 = 2^{6} × 3}

\sf{1100 = 2^{2} × 5^{3}}

\sf{4444 = 2^{2} × 11 × 101}

Answered by Anonymous
15

\huge\mathrm\red{Answer}

~~~~~~~~~~\sf\red{ HCF \:of \:192}

\begin{array}{r | l}2 &amp; 192 \\</p><p> \cline{2-2} 2 &amp; 96 \\</p><p> \cline{2-2} 2 &amp; 48 \\</p><p> \cline{2-2} 2 &amp; 24 \\</p><p> \cline{2-2} 2 &amp; 12 \\</p><p> \cline{2-2} 2 &amp; 6 \\</p><p> \cline{2-2} 3 &amp; 3 \\ \cline{2-2} &amp; 1 \end{array}</p><p>

\sf\red{ 2 × 2 × 2 × 2 × 2 × 2 × 3 × 1 }

\sf\red{:⟹ 2^{6} × 3 }

~~~~~~~~~~\sf\orange{ HCF \:of \:1100}

\begin{array}{r | l} 2 &amp; 1100 \\ \cline{2-2} 2 &amp; 550 \\ \cline{2-2} 5 &amp; 125 \\ \cline{2-2} 5 &amp; 25 \\ \cline{2-2} 5 &amp; 5 \\ \cline{2-2} &amp; 1 \end{array}

\sf\orange{ 2 × 2 × 5 × 5 × 5 × 1 }

\sf\orange{:⟹ 2^{2} × 5^{3} }

~~~~~~~~~~\sf\green{ HCF \:of \:4444}

\begin{array}{r | l}2 &amp; 4444 \\ \cline{2-2}2 &amp; 2222 \\ \cline{2-2}11 &amp; 1111 \\ \cline{2-2}101 &amp; 101 \\ \cline{2-2} &amp; 1  \end{array}

\sf\green{ 2 × 2 × 11 × 101 × 1}

\sf\green{:⟹ 2^{2} × 11 × 101 }

\sf{192 = 2^{6} × 3}

\sf{1100 = 2^{2} × 5^{3}}

\sf{4444 = 2^{2} × 11 × 101}

Similar questions