Math, asked by akshitagupta0461, 6 months ago

question of linear equation​

Attachments:

Answers

Answered by ItzAditt007
12

Answer:-

The Required value of x is 3.

Explanation:-

Given Equation:-

\\ \bf\mapsto \:  \dfrac{x - 3}{2}  + 4 =  \frac{3x + 7}{4} .

To Find:-

  • The Solution of the equation, that is the value of x.

Solution:-

\\ \tt\mapsto \:  \dfrac{x - 3}{2}  + 4 =  \frac{3x + 7}{4} .

\\ \tt\mapsto  \dfrac{ x - 3 + 2(4)}{2} =  \dfrac{3x + 7}{4}  .  \\  \\  \rm{ \bigg(by \:  \:  tak ing \:  \: lcm. \bigg)}

\\ \tt\mapsto \frac{x - 3 + 8}{2} =  \frac{3x + 7}{4} .

\\ \tt\mapsto \frac{x + 5}{2}  =  \frac{3x + 7}{4} .

\\ \tt\mapsto4 \bigg( \frac{x + 5}{2} \bigg) =  3x + 7 . \\  \\  \rm \: transporting \:  \: 4 \:  \: to \:  \: LHS.

\\ \tt\mapsto4(x + 5) = 2(3x + 7) \:  \:  \:  \\  \\  \rm transporting \:  \: 2 \:  \: to \:  \: RHS.

\\ \tt\mapsto 4x + 20 = 6x + 14. \\  \\   \rm \: openi ng \:  \: brackets.

\\ \tt\mapsto4x - 6x= 14 - 20.

\\ \tt\mapsto  \cancel{ - } \:  \:  2x =  \cancel{ - } \:  \: 6.

\\ \tt\mapsto2x = 6.

\\ \tt\mapsto x =  \dfrac{6}{2} .

\\  \large\bf\mapsto \boxed{ \bf{x = 3.}}

Therefore The Required Value Of x is 3.

Answered by Anonymous
36

 \large{\underline{\purple{\textbf{Given:-}}}} \\   \\

 \sf \quad \bullet Equation  =  \dfrac{x - 3}{2}  + 4 =  \dfrac{3x + 7}{4}  \\  \\

 \large{\underline{\purple{\textbf{Find:-}}}} \\   \\

 \sf \quad \bullet value \: of \: x  \\  \\

 \large{\underline{\purple{\textbf{Solution:-}}}} \\   \\

 \sf \dashrightarrow \dfrac{x - 3}{2}  + 4 =  \dfrac{3x + 7}{4} \\  \\

\red\bigstar Taking L.C.M

\\

 \sf \dashrightarrow \dfrac{x - 3 + 2 \times 4}{2}=  \dfrac{3x + 7}{4} \\  \\

 \sf \dashrightarrow \dfrac{x - 3 + 8}{2}=  \dfrac{3x + 7}{4} \\  \\

 \sf \dashrightarrow \dfrac{x  + 5}{2}=  \dfrac{3x + 7}{4} \\  \\

\pink\bigstar Cross-multiplication

\\

 \sf \dashrightarrow 4(x  + 5) =2(3x + 7) \\  \\

 \sf \dashrightarrow 4x  +20 =6x + 14\\  \\

\purple\bigstar Collect like terms

\\

 \sf \dashrightarrow 4x  - 6x =14 - 20\\  \\

 \sf \dashrightarrow - 2x = - 6\\  \\

 \sf \dashrightarrow  \not{-} 2x =  \not{-} 6\\  \\

 \sf \dashrightarrow 2x =6\\  \\

 \sf \dashrightarrow x = \dfrac{6}{2}\\  \\

 \sf \dashrightarrow x = 3\\  \\

\underline{\boxed{\sf\therefore Value\:of\:x\:will\:be\:3}}

Similar questions