Math, asked by Leader111, 2 months ago

Question of the day....

A man sold two washing machine for Rs. 7500 each. On one he gains 25 % and on other he loses 25 %. Find the gain or lose percentage.​

Answers

Answered by SachinGupta01
9

 \bf \: \underline{Given} :

 \sf \: A \:  man \:  sold \:  two \:  washing \:  machine \:  for \:  Rs.  \: 7500  \: each.

 \sf \: On \:  one  \: he  \: gains \:  25 \:   \% \:  and \:  on  \: other  \: he \:  loses \:  25  \%.

 \bf \:  \underline{To  \: find} :

 \sf \: We \:  have  \: to  \: find \:  his \:  gain  \: or  \: lose \:  percentage.

 \bf   \: \underline{\underline{Solution}  }

 \sf \: \underline{ First  \: of \:  all  \: we \:  will \:  find \:  the \:  C.P \:  of  \: first  \: washing \:  machine}.

 \sf \: Here,

 \sf \: S.P \:  of  \: first  \: washing  \: machine = Rs. 7500

 \sf \: Gain \:  \% = 25  \: \%

 \sf \:\implies \: \boxed{ \sf \pink{C.P =  \dfrac{100}{(100 +Gain \%) }  \:  \times \:  S.P }}

 \sf \: \implies \:C.P =  \dfrac{100}{(100 +25) }  \:  \times \:  7500

 \sf \:\implies \: C.P =  \dfrac{100}{125}  \:  \times \:  7500

 \sf \: \red{\implies \: C.P \:  of  \: first  \: washing  \: machine=  Rs.  \: 6000}

 \sf \:  \underline{Now,  \: we  \: will  \: find \:  the  \: C.P \:  of \:  second \:  washing \:  machine}.

 \sf \: Here,

 \sf \: S.P \:  of  \: second  \: washing  \: machine = Rs. 7500

 \sf \: Loss  \: \% = 25 \:  \%

 \sf \: \implies \:\boxed{\sf \pink{C.P =  \dfrac{100}{(100  - Loss \%) }  \:  \times \:  S.P}}

 \sf \: \implies \:C.P =  \dfrac{100}{(100  - 25\%) }  \:  \times \: 7500

 \sf \: \implies \:C.P =  \dfrac{100}{75 }  \:  \times \: 7500

 \sf \red{\implies \: C.P  \: of  \: second  \: washing  \: machine=  Rs.  \: 10,000}

 \bf \: So,

 \sf \: Total \:  C.P  \: of \:  both \:  washing  \: machine =Rs.  \: ( 6000 + 10,000) = Rs. \:  16,000

 \sf \: Total \:  S.P   \: of \:  both \:  washing  \: machine =Rs.  \: ( 7500 + 7500)= Rs. \:  15,000

 \sf \:  \: Here \:  S.P > C.P \: \: \: \: \underline{So,  \: Loss \:  is \:  there}

 \sf \:\implies \:  Loss = C.P  -  S.P

 \sf \:\implies \:  Loss =Rs.  \: ( 16000  -  15000 )

 \sf \:\implies \:  Loss = Rs.  \: 1000

 \sf \: \implies \:\boxed{ \sf \pink{\: Loss \:  \% =  \dfrac{Loss}{C. P }  \:  \times \:  100}}

 \sf \:\implies \:  Loss \:  \% =  \dfrac{1000}{16000}  \:  \times \:  100

 \implies \underline{\boxed{ \green{ \sf \:  Loss \:  \% =  6.25 \:  \% }}}

Answered by Anonymous
14

Answer:

  • Man get loss of 6.25% on whole transaction

Explanation:

Given:

  • Man sold two washing machine at ₹7500 each
  • On one machine, he gain 25%
  • On another machine, he loss 25%

To find:

  • Gain or loss percentage of man

Solution:

Here, it is given that man sold two machines at ₹7500 each in which he gain 25% on one machine but he loses 25% on another machine.

Now, to find gain/loss percentage, we need to find cost price (CP) of machine first.

We know that :

  • \large{\boxed{\sf{\pink{CP\:=\: \dfrac{100}{100+gain\%(-loss\%)}×SP}}}}

Finding CP of first machine ( of 25% gain):-

Given that :

  • SP = ₹7500
  • gain = 25%

Let put the given value in formula:-

\large{\sf{CP\:=\:\dfrac{100}{100+gain\%}×SP}}

\implies\large{\sf{CP\:=\:\dfrac{100}{100+25}×7500}}

\implies\large{\sf{CP\:=\:\dfrac{100}{125}×7500}}

\implies\large{\sf{CP\:=\:\dfrac{100}{\cancel{125}}×{\cancel{7500}}}}

\implies\large{\sf{CP\:=\:100×60}}

\implies\large{\sf{CP\:=\:6000}}

Therefore,

  • Cost price of this washing machine is ₹6000.

_______________

Finding CP of second machine (of 25% loss):-

Given that:

  • SP = ₹7500
  • loss = 25%

Let put the given value in formula :-

\large{\sf{CP\:=\:\dfrac{100}{100-loss\%}×SP}}

\implies\large{\sf{CP\:=\:\dfrac{100}{100-25}×7500}}

\implies\large{\sf{CP\:=\:\dfrac{100}{75}×7500}}

\implies\large{\sf{CP\:=\:\dfrac{100}{\cancel{75}}×{\cancel{7500}}}}

\implies\large{\sf{CP\:=\: 100×100}}

\implies\large{\sf{CP\:=\:10000}}

Therefore,

  • Cost price of second machine is ₹10000

_______________

Now, we find that CP of both machines are ₹6000 and ₹10000 respectively and SP is ₹7500 each as given.

Therefore,

  • Total CP of both machines is ₹6000+₹10000 = ₹16000
  • Total SP of both machines is ₹7500+₹7500 = ₹15000

What we found from here? we can see that here SP < CP. If SP<CP then there will loss.

  • Loss = CP - SP = 16000-15000 = ₹1000

We have :

  • CP = ₹16000
  • SP = ₹15000
  • Loss = ₹1000

We know that :

  • \large{\boxed{\sf{\pink{Loss\%\:=\:\dfrac{loss×100}{CP}}}}}

Let put the given value in formula :

\large{\sf{Loss\%\:=\: \dfrac{loss×100}{CP}}}

\implies\large{\sf{Loss\%\:=\: \dfrac{1000×100}{16000}}}

\implies\large{\sf{Loss\%\:=\:\dfrac{100000}{16000}}}

\implies\large{\sf{Loss\%\:=\: {\cancel{\dfrac{100000}{16000}}}}}

\implies\large{\sf{Loss\%\:=\: 6.25\%}}

Therefore,

  • \large{\boxed{\sf{\red{Man\:get\:loss\:on\:whole\: transaction\:of\:6.25\%}}}}
Similar questions