Math, asked by ussmotiharip616n5, 1 year ago

Question of Trigonometry

Attachments:

Answers

Answered by Anonymous
0
I hope it helps your
Attachments:
Answered by Anonymous
3

Question:

To Prove :

{\sf{ {\sqrt{ {\dfrac{1 + cos A}{1 - cos A}} }} = (cosec A + cot A)}}

Step-by-step explanation:

L.H.S. = {\sf{\ \ {\sqrt{ {\dfrac{1 + cos A}{1 - cos A}} }}}}

_______________________________

Dividing and multiplying with 1 + cos A, we get

\implies{\sf{ {\sqrt{ {\dfrac{1 + cos A}{1 - cos A}} \times {\dfrac{1 + cos A}{1 + cos A}} }} }}

_______________________________

\implies{\sf{ {\sqrt{ {\dfrac{ (1 + cos A)^2}{(1 - cos A)(1 + cos A)}} }}}}

_______________________________

{\boxed{\tt{Identity \ : \ (a - b)(a + b) = a^2 - b^2}}}

{\tt{Here, \ a = 1, \ b = cos A}}

_______________________________

\implies{\sf{ {\sqrt{ {\dfrac{ (1 + cos A)^2}{(1)^2 - (cos A)^2}} }}}}

_______________________________

\implies{\sf{ {\sqrt{ {\dfrac{ (1 + cos A)^2}{1 - cos^2 A}} }}}}

_______________________________

{\boxed{\tt{Identity \ : \ sin^2 \theta + cos^2 \theta = 1}}}

{\tt{From \ this, \ we \ get \ [ 1 - cos^2 \theta = sin^2 \theta ] }}

_______________________________

\implies{\sf{ {\sqrt{ {\dfrac{ (1 + cos A)^2}{sin^2 A}} }}}}

_______________________________

We can write this as :

\implies{\sf{ {\sqrt{ {\dfrac{ (1 + cos A)^2}{(sin A)^2}} }}}}

_______________________________

\implies{\sf{ {\sqrt{ \left( {\dfrac{1 + cos A}{sin A}} \right) ^2 }}}}

_______________________________

\implies{\sf{ {\dfrac{1 + cos A}{sin A}} }}

_______________________________

We can write this as :

\implies{\sf{ {\dfrac{1}{sin A}} + {\dfrac{cos A}{sin A}} }}

_______________________________

{\boxed{\tt{Identity \ : \ {\dfrac{1}{sin A}} = cosec A}}}

{\boxed{\tt{Identity \ : \ {\dfrac{cos A}{sin A}} = cot A}}}

_______________________________

\implies{\sf{ cosec A + cot A}}

_______________________________

= R.H.S.

Hence, proved !!

Similar questions