Math, asked by Vamprixussa, 1 year ago

║⊕QUESTION⊕║
Pure mathematics is the poetry of logical ideas

CLASS 11
PERMUTATIONS AND COMBINATIONS

How many different words can be formed by jumbling the letters in the word MISSISSIPPI in which no two S are adjacent?

Answers

Answered by tripathyspandan23
1

Step-by-step explanation:

8C4*7!/ 4!2!

=8C4*7*6!/4!2!

=7*8C4*6C4

=7350 ways

Answered by ItSdHrUvSiNgH
5

Step-by-step explanation:

\huge\bf{\mid{\overline{\underline{ANSWER:-}\mid}}}}

There are restriction of no two 'S' to be together

So leaving space for 'S' let's arrange remaining words.

 \underline{ \:  \:  \: \:  \:  } \:  \underline{ M  } \:  \underline{ \:  \:  \: \:  \:  } \:  \underline{ I } \:  \underline{ \:  \:  \: \:  \:  } \:  \underline{  I } \:  \underline{ \:  \:  \: \:  \:  } \:  \underline{I   } \:  \underline{ \:  \:  \: \:  \:  } \:  \underline{ P  } \:  \\  \underline{ \:  \:  \: \:  \:  } \:  \underline{ P } \:  \underline{ \:  \:  \: \:  \:  } \:  \underline{  I } \:  \underline{ \:  \:  \: \:  \:  } \:

We can arrange the seven letters in,

 \frac{7 ! }{4 ! \times 2! }

We can place 'S' in vacant boxes

There are four 'S' in word MISSISSIPPI

So we have option of selecting any four places

 ^{n} C_r =   ^{8}C_4 =    \frac{8 !}{4!(8 - 4)!}

So your answer is,

 \frac{7!}{4! \times 2!}  \times   ^{8} C_4 \\  \\  \frac{7  \times  \cancel6 \times 5 \times  \cancel4! }{ \cancel4!  \times  \cancel2  \times  1}  \times  \frac{ \cancel8 \times 7 \times  \cancel6 \times 5}{ \cancel4 \times  \cancel3 \times  \cancel2}  \\  \\ 105 \times 70 \\  \\ \huge\boxed{ 7350 \:  \: ways} \\ \\

\boxed{ \begin {minipage} {7 cm}$ Formula \: for \: ^{n}P_r \: and \: ^{n}C_r \\ \\ ^{n}P_r = \frac{ n !}{(n-r) !} \\ \\ ^{n}C_r = \frac{n !}{ r ! (n-r) ! } $\end {minipage}}

Similar questions