Math, asked by INSIDI0US, 3 months ago

Question:-

Q. The sides of a triangular plot are in the ratio of 3 : 5 : 7 and its perimeter is 300m. Find its area.

Plz don't spam. Quality answer needed...​

Answers

Answered by Rizakhan678540
37

Answer:

Let the sides of a triangular plot is 3x , 5x and 7x

3x + 5x + 7x = 300 m

15x = 300

x = 300/15

x = 20

then the sides of triangular plot is

3x = (3 × 20) = 60

5x = (5 × 20) = 100

7x = (7 × 20) =140

now the area of triangular plot is

Area :-

 \sqrt{s(s - a(s - b(s - c)}  \\   \\  \sqrt{150(150 - 60)(150 - 100)150 - 140)}  \\ 1500 \sqrt{3m {}^{2} }

Area of triangular plot is 1500 \sqrt{3m {}^{2} }

 \:

Answered by ADARSHBrainly
31

Given :-

  • Sides of triangular plot are in the ratio of 3 : 5 : 7.
  • Its perimeter is 300m.

To find :-

  • Area of the Triangular plot.

Assumption :-

  • Let ratio be in x form as 3x, 5x, 7x.

Solution :-

Value of x is :-

{\sf{\implies{3x + 5x + 7x = 300}}}

{\sf{\implies{15x = 300}}}

{\sf{\implies{x =  \dfrac{300}{15}}}}

{ \boxed{ \blue{\sf{\implies{x = 20 \: }}}}}

So, length of all sides are

{\sf{\implies{3x = 3 \times 20 ={ \green{ \boxed{ \sf {60 \: m}}}}}}}

{\sf{\implies{5x = 5\times 20 ={ \green{ \boxed{ \sf {100 \: m}}}}}}}

{\sf{\implies{7x = 7\times 20 ={ \green{ \boxed{ \sf {140 \: m}}}}}}}

_______________________________

Here we have given only three sides not height so, area can be found by applying Heron's Formula. Before that

Let

  • a = 60 m
  • b = 100 m
  • c = 140 m

Semiperimeter of the triangle is

{\sf{ \ratio\longmapsto{ \cfrac{a + b + c}{2} }}}

{\sf{ \ratio\longmapsto{ \cfrac{60 + 100 + 140}{2} }}}

{\sf{ \ratio\longmapsto{ \cfrac{300}{2} }}}

{ \boxed{  \green{\sf{ \ratio\longmapsto{ 150 \: m}}}}}

So, Area of the Triangular Plot :-

{ \ratio\longmapsto{\bf{ \sqrt{s(s - a)(s - b)(s - c)} }}}

Here

  • s is semiperimeter
  • a, b, c are sides

{ \ratio\longmapsto{\bf{ \sqrt{150(150 - 60)(150 - 100)(150- 140)} }}}

{ \ratio\longmapsto{\bf{ \sqrt{150(90)(50)(10)} }}}

{ \ratio\longmapsto{\bf{ \sqrt{(10 \times 15)(10 \times 9)(10 \times 5)(10)} }}}

{ \ratio\longmapsto{\bf10 \times 10{ \sqrt{( 15)( 9)( 5)} }}}

{ \ratio\longmapsto{\bf10 \times 10{ \sqrt{( 5 \times 3)( 3 \times 3)( 5)} }}}

{ \ratio\longmapsto{\bf10 \times 10 \times 5 \times 3{ \sqrt{ 3} }}}

 \large{ \underline{ \boxed{  \red{ \ratio\longmapsto{\bf1500{ \sqrt{ 3} \:   \: {m}^{2}  }}}}}}

So, area of the field is 1500√3 m².


Flaunt: keep it up :)
Similar questions