English, asked by ARCHISHA008, 2 months ago


★ Question -

\longrightarrow \large \tt{Verify  \: that  \: : |x + y| < |x| + |y|  \: For   \: x =  \frac{ - 5}{12} \:  and \:  y =  \frac{ - 7}{18}}

Pls help me out with this question. No spam!

Answers

Answered by Tomboyish44
42

Corrected question:

Verify that | x + y | = | x | + | y |, for x = (-5)/(12) and y = (-7)/(18)

Solution:

Value of | x + y | (Absolute value of x + y):

\sf \dashrightarrow \left| \ x + y \ \right|

‎‎

Substitute the value of 'x' and 'y'.

‎‎

\sf \dashrightarrow \left| \ \left( \dfrac{-5}{12} \right) + \left( \dfrac{-7}{18} \right) \ \right|

The LCM of 12 and 18 is 36, on taking LCM we get;

\sf \dashrightarrow \left| \ \left( \dfrac{-5}{12} \times \dfrac{3}{3} \right) + \left( \dfrac{-7}{18} \times \dfrac{2}{2} \right) \ \right|

\sf \dashrightarrow \left| \ \left( \dfrac{-15}{36} \right) + \left( \dfrac{-14}{36} \right) \ \right|

\sf \dashrightarrow \left| \ \left( \dfrac{-15 - 14}{36} \right) \ \right|

\sf \dashrightarrow \left| \ \dfrac{\textsf{\textbf{-29}}}{\textsf{\textbf{36}}} \ \right|

The absolute value of a negative fraction will be positive, therefore;

\sf \dashrightarrow \ \dfrac{\textsf{\textbf{29}}}{\textsf{\textbf{36}}} \ \dots \ Relation(1)

Value of | x | + | y | (Absolute value of x + Absolute value of y):

\sf \dashrightarrow \left| \ x \ \right| + \left| \ y \ \right|

\sf \dashrightarrow \left| \ \dfrac{-5}{12} \ \right| + \left| \ \dfrac{-7}{18} \ \right|

We know that the absolute value of a negative number is positive, therefore;

\sf \dashrightarrow \dfrac{5}{12} + \dfrac{7}{18}

The LCM of 12 and 18 is 36, on taking LCM we get;

\sf \dashrightarrow \left(\dfrac{5}{12} \times \dfrac{3}{3} \right) + \left(\dfrac{7}{18} \times \dfrac{2}{2} \right)

\sf \dashrightarrow \dfrac{15}{36} + \dfrac{14}{36}

\sf \dashrightarrow \dfrac{15 + 14}{36}

\sf \dashrightarrow \dfrac{\textsf{\textbf{29}}}{\textsf{\textbf{36}}} \ \dots Relation(2)

We've been asked to verify that;

\sf \dashrightarrow | x + y | = | x | + | y |

Substitute the values we've gotten in Relation(1) and Relation(2).

\sf \dashrightarrow \dfrac{29}{36} = \dfrac{29}{36}

\sf \dashrightarrow LHS = RHS

‎‎

Therefore, verified.

Similar questions