Math, asked by ʙʀᴀɪɴʟʏᴡɪᴛᴄh, 3 months ago

Question ⤵

☞Two opposite angular points of a square ABCD are A(-1, 2) and C(3,-2). Find the coordinates of the remaining angular points of the square.
__________________________
NOTE ☟
☞No Spam
☞Full Explanation Solution.

Answers

Answered by Anonymous
16

Required Answer is in attachment!

• Formula used in solution:

\star\;{\bf {Distance\: Formula}}\implies \sf\sqrt{(X_2-X_1)^2+(Y_2-Y_1)^2}

\star\;{\bf {Pythagoras\: theorem}}\sf \implies\:H^2=B^2+P^2

\sf Here\begin{cases}\sf H^2\: refers\:to\:square\:of\: hypotenuse.\\\sf P^2 \: refers\:to\: square\:of\: perpendicular.\\\sf B^2\: refers\:to\: square\:of\:base.\end{cases}

• Identity used:

\star\;{\bf {(A+B)^2=}}\sf A^2+B^2+2AB

\star\;{\bf {(A-B)^2=}}\sf A^2+B^2-2AB

 

Attachments:
Answered by Anonymous
18

We know

All sides of Square are Equal

⟼ AB = BC

 \sqrt{(x - ( - 1) {}^{2} + (y - 2) {}^{2}  }  =  \sqrt{(x - 3) {}^{2} (y - ( - 2) {}^{2} }

\sf\pink{squaring \: both \: side... }

(x + 1) {}^{2}  + (y - 2) {}^{2}  = (x - 3) {}^{2} +  (y + 2) {}^{2}\\

 \sf\red{x {}^{2} }  + 1 + 2x + \sf\red{y {}^{2} + 4 } - 4y = \sf\red{x {}^{2} } + 9 - 6x + \sf\red{y {}^{2} + 4 } + 4y \\ 2x - 4y + 1 =  - 6x + 4y + 9 \\ 2x + 6x = 4y + 4y + 9 - 1

 {\bold{\green{\underline{\underline{Each \:  Terms \:  Divide \:  by \:  8}}}}}

\;\large{\boxed{\bf{\purple{x = y + 1}}}} -  - (i)

 {\bold{\pink{\underline{\underline{sum \: of \: square \: of \: other \: two \: sides}}}}}

AC ² = AB² + BC²

[ 3- (-1) ] ² + (-2 -2) ² = x² + 1 + 2x + y +4 - 4y + x² + 9 - 6x + y² + 4 + 4y

4 {}^{2}  + ( - 4) {}^{2}  = 2x { }^{2}  - 4x + 18 \\ 16 + 16 = 2x {}^{2}  + 2y {}^{2}  - 4x + 18 \\ 2x {}^{2}  + 2y {}^{2}  - 4x + 18 - 32 = 0

2x {}^{2}  + 2y {}^{2}  - 4x - 14 = 0 \\ \;\large{\boxed{\bf{\red{x {}^{2}  + y {}^{2} - 2x - 7 = 0 }}}} -  (ii)

\sf\colorbox{green}{ putting \: the \: value \: of \: x \: see(eq.i)}

(y + 1) {}^{2}  + y {}^{2}  - 2(y + 1) - 7 = 0 \\ y {}^{2}  + 1 +  \sf\red{2y} + y {}^{2}  - \sf\red{2y} - 2 - 7 = 0 \\⇒ 2y {}^{2}  - 8 = 0 \\ ⇒2(y {}^{2}  - 4) = 0 \\⇒ y {}^{2}  - 4 = 0 \\⇒ y {}^{2}  = 4 \\⇒ y = ±  \sqrt{4}  \\ ⇒y = ± \: 2

When y = 2

x = y + 1 \\  = 2 + 1 \\  = 3

When y = - 2

x =  y + 1\\  =  - 2 + 1 \\  =  - 1

Therefore, Other Angular Points are

(3,2) \: and \: ( - 1 ,- 2)

\sf\blue{hope \: this \: helps \: you!! \: }

___________▼△▼△▼△▼△_________

@Mahor2111

Note ❎ [ only For moderator ]

I had posted the solution in morning itself, but they reported my answers. without any Valid Reason __i don't know why pro Thala Report my All answers :(

(He iis___:() )

Attachments:
Similar questions