Math, asked by yashchauhan9850, 3 months ago

Question:
Using the first principle,find the derivative of Sin(3x²-5)?

Answers

Answered by mathdude500
4

─━─━─━─━─━─━─━─━─━─━─━─━─

\tt \:  ⟼ \: Let  \: f(x) = sin( {3x}^{2}  - 5)

\tt \:  ⟼ \: Change \:  x \tt \:  ⟼ \:  x + h

\tt \:  ⟼f(x+ h) = \: sin \bigg(3 {(x + h)}^{2}  - 5 \bigg)

\tt \:  ⟼By  \: definition \: of \: first \: principle

\tt \:  ⟼ \: f'(x) \:  =  \: \lim_{ h\to0}\dfrac{f(x+ h) \:  -  \: f(x)}{h}

\tt \:   \: f'(x) \:  =  \: \lim_{ h\to0}\dfrac{\: sin \bigg(3 {(x + h)}^{2}  - 5 \bigg) - sin( {3x}^{2}  - 5)}{h}

\tt \:  using \: sinx - siny \:  = 2 \: cos(\dfrac{x + y}{2} )sin(\dfrac{x - y}{2})

\tt \:  =  \: \lim_{ h\to0}\dfrac{2 \times cos \bigg(\dfrac{3 {(x + h)}^{2} - 5 +  {3x}^{2} - 5  }{2} \bigg) \times sin \bigg(\dfrac{3 {(x + h)}^{2} - 5  -   {3x}^{2}  +  5  }{2} \bigg) }{h}

\tt \:  =  \: 2 \: \lim_{ h\to0}cos \bigg(\dfrac{3 {(x + h)}^{2} - 5 +  {3x}^{2} - 5  }{2} \bigg) \times \tt \:  \lim_{ h\to0}\dfrac{sin \bigg(\dfrac{3 {(x + h)}^{2}   -   {3x}^{2}  }{2} \bigg)}{h}

\tt \:  =  2 \: cos( {3x}^{2} - 5) \: \lim_{ h\to0}\dfrac{sin \bigg(\dfrac{3(  \cancel{{x}^{2}} +  {h}^{2} + 2hx -   \cancel{{x}^{2}} )  }{2}  \bigg)}{h}

\tt \:  = 2 cos({3x}^{2}  - 5) \: \lim_{ h\to0}\dfrac{sin \bigg(\dfrac{3 {h}^{2}  + 6xh}{2} \bigg) }{h}

\tt \:  = 2 cos({3x}^{2}  - 5) \: \lim_{ h\to0}\dfrac{sin \bigg(\dfrac{3 {h}^{2}  + 6xh}{2} \bigg) }{\bigg(\dfrac{3 {h}^{2}  + 6xh}{2} \bigg)} \times \dfrac{\bigg(\dfrac{3 {h}^{2}  + 6xh}{2} \bigg)}{h}

\bf \:    \bigg(\because \: \tt \:    \: \lim_{ x\to0}\dfrac{sinx}{x}  =  \: 1 \bigg)

\tt \:  = 2 cos({3x}^{2}  - 5) \: \lim_{ h\to0} \: 1 \times \dfrac{\bigg(\dfrac{3 {h} + 6x}{2} \bigg) \times  \cancel h }{ \cancel h}

\tt \:  =  \cancel2 cos({3x}^{2}  - 5) \:  \times \dfrac{6x}{ \cancel2}

\tt \:  = 6 \: x \:  cos({3x}^{2}  - 5) \:

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions