"Question27
If A = 30°, verify that : tan 2 A = 2tanA / 1-tan²A
Chapter6,T-Ratios of particular angles Exercise -6 ,Page number 289"
Answers
Answered by
12
Hey there!
Given to verify : tan2A = 2 tan A / 1 - tan²A
If A = 30°
1) tan 2A = tan(2*30) = tan60 = √3 [ T - Ratio of 60° , π/3 ]
2) tanA = tan30 = 1/√3
Now,
Given equation to verify : tan2A = 2 tan A / 1 - tan²A
==================================
Finding the value of tan2A
= tan60
= √3
==================================
Finding the value of 2 tan A / 1 - tan²A
= 2 tan30 / 1 +tan²30
= 2(1/√3 ) / 1 - (1/√3)²
= 2/√3 / ( 1 - 1/3 )
= 2/√3 / 2/3
= 2/√3 * 3/2
= 3/√3
= √3
==================================
Here, We observe that tan2A = 2 tan A / 1 - tan²A
Hence proved that, tan2A = 2 tan A / 1 - tan²A for A = 30°
Given to verify : tan2A = 2 tan A / 1 - tan²A
If A = 30°
1) tan 2A = tan(2*30) = tan60 = √3 [ T - Ratio of 60° , π/3 ]
2) tanA = tan30 = 1/√3
Now,
Given equation to verify : tan2A = 2 tan A / 1 - tan²A
==================================
Finding the value of tan2A
= tan60
= √3
==================================
Finding the value of 2 tan A / 1 - tan²A
= 2 tan30 / 1 +tan²30
= 2(1/√3 ) / 1 - (1/√3)²
= 2/√3 / ( 1 - 1/3 )
= 2/√3 / 2/3
= 2/√3 * 3/2
= 3/√3
= √3
==================================
Here, We observe that tan2A = 2 tan A / 1 - tan²A
Hence proved that, tan2A = 2 tan A / 1 - tan²A for A = 30°
Answered by
23
HELLO DEAR,
GIVEN THAT:-
A = 30°
NOW,
tan(2*30°) = tan60°
= tan60° = √3
2tanA/(1 - tan²A)
= 2tan30°/(1 - tan²30°)
= (2*1/√3) / (1 - 1/3)
= 2/√3/ ( 3 - 1)/3
= 2/√3/2/3
= 2/√3 * 3/2
= √3
I HOPE ITS HELP YOU DEAR,
THANKS
GIVEN THAT:-
A = 30°
NOW,
tan(2*30°) = tan60°
= tan60° = √3
2tanA/(1 - tan²A)
= 2tan30°/(1 - tan²30°)
= (2*1/√3) / (1 - 1/3)
= 2/√3/ ( 3 - 1)/3
= 2/√3/2/3
= 2/√3 * 3/2
= √3
I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions