"Question33
Chapter6,T-Ratios of particular angles Exercise -6 ,Page number 289
If A = B = 45°,verify that : cos (A + B) = cos A cos B - sin A sin B "
Answers
Answered by
7
Hey there! Thanka for the question!
Given,
A = B = 45°
Now,
cos(A + B) = cosA cosB - sinA sinB
Substituting A = 45 , B = 45 °
cos( 45 + 45 ) = cos45 cos45 - sin45 sin45
cos90 = cos²45 - sin²45
We know, Trigonometry ratios of particular angles : cos90 = 0 , cos45 = 1/√2 , sin45 = 1/√2
0= (1/√2)² - (1/√2)²
0 = 1/2 - 1/2
0 = 0
Both Sides of the equation are equal.
Hence, We proved and verified that cos (A + B) = cos A cos B - sin A sin B holds good for A = B = 45°
Given,
A = B = 45°
Now,
cos(A + B) = cosA cosB - sinA sinB
Substituting A = 45 , B = 45 °
cos( 45 + 45 ) = cos45 cos45 - sin45 sin45
cos90 = cos²45 - sin²45
We know, Trigonometry ratios of particular angles : cos90 = 0 , cos45 = 1/√2 , sin45 = 1/√2
0= (1/√2)² - (1/√2)²
0 = 1/2 - 1/2
0 = 0
Both Sides of the equation are equal.
Hence, We proved and verified that cos (A + B) = cos A cos B - sin A sin B holds good for A = B = 45°
Steph0303:
Thank you praneeth
Answered by
1
Given that
A = B = 45°
To verify
cos ( A + B ) = cos A cos B - sin A sin B
substitute the value of A and B
cos ( 45 + 45 ) = cos 45 cos 45 - sin 45 cos 45
On RSH
= 1/2 - 1 /2
= 0
ON LHS
cos 90 = 0
So LHS = RHS
Hence proved
A = B = 45°
To verify
cos ( A + B ) = cos A cos B - sin A sin B
substitute the value of A and B
cos ( 45 + 45 ) = cos 45 cos 45 - sin 45 cos 45
On RSH
= 1/2 - 1 /2
= 0
ON LHS
cos 90 = 0
So LHS = RHS
Hence proved
Similar questions