"Question44
Prove the identity : (1 - cos² θ ) cosec² θ = 1
Chapter7,Trigonometric identities Exercise -7A , Page number 314"
Answers
Answered by
17
Hey !!!
So simple question .
from LHS
( 1 - cos²¢ ) cosec²¢
or, sin²¢ * cosec²¢ ➡ { 1 - cos²¢ = sin²¢ }
or,
sin²¢/sin²¢ ➡ {•°•1/cosec²¢ = sin²¢ }
= 1 RHS prooved
________________________
Hope it helps you !
@Rajukumar111
So simple question .
from LHS
( 1 - cos²¢ ) cosec²¢
or, sin²¢ * cosec²¢ ➡ { 1 - cos²¢ = sin²¢ }
or,
sin²¢/sin²¢ ➡ {•°•1/cosec²¢ = sin²¢ }
= 1 RHS prooved
________________________
Hope it helps you !
@Rajukumar111
Answered by
18
Hey there!
We know that,
( sin²θ + cos² θ ) = 1
sin²θ = 1 - cos²θ
Also , sinθ = 1 / cosecθ
Coming back to your question :
L. H. S
=> (1 - cos² θ ) cosec² θ
=> sin² θ ( cosec² θ )
=> ( sin θ . cosec θ )²
=> ( cosec θ / cosec θ ) ²
=> 1²
=> 1
=> R. H. S
We proved that (1 - cos² θ ) cosec² θ = 1
We know that,
( sin²θ + cos² θ ) = 1
sin²θ = 1 - cos²θ
Also , sinθ = 1 / cosecθ
Coming back to your question :
L. H. S
=> (1 - cos² θ ) cosec² θ
=> sin² θ ( cosec² θ )
=> ( sin θ . cosec θ )²
=> ( cosec θ / cosec θ ) ²
=> 1²
=> 1
=> R. H. S
We proved that (1 - cos² θ ) cosec² θ = 1
Similar questions