"Question48
Prove the identity : (1-cos² θ ) sec² θ = tan² θ
Chapter7,Trigonometric identities Exercise -7A , Page number 314"
Answers
Answered by
3
To Prove : (1 -cos^2 Ф) sec^2 ФФ = tan^2 Ф
Proof :
LHS
we know, (1 - cos^2 Ф ) = sin^2 Ф
So,
( sin^2 Ф )( sec^2 Ф)
⇒ ×
⇒
⇒ tan^2 Ф
Hence, Proved.
Proof :
LHS
we know, (1 - cos^2 Ф ) = sin^2 Ф
So,
( sin^2 Ф )( sec^2 Ф)
⇒ ×
⇒
⇒ tan^2 Ф
Hence, Proved.
MathHelper:
Dear user , I needed a answer in terms of theta not in pi.
Answered by
11
Solution :
1) To prove : “(1-cos² θ ) sec² θ = tan² θ ”
2) Inference ( Understanding the question, Thinking of the method ) : We shall start from Left hand side ( L. H. S) and proceed till we get R. H. S. We will use trigonometric identities too.
3) Formulas we are going to use :
1 -cos²θ = sin²θ
tanθ = sinθ * secθ
4) Actual proof :
Firstly, We know that, sin²θ + cos²θ = 1 , So, 1 - cos²θ = sin²θ
Therefore, We proved the identity (1-cos² θ ) sec² θ = tan² θ .
Hope it helps!
1) To prove : “(1-cos² θ ) sec² θ = tan² θ ”
2) Inference ( Understanding the question, Thinking of the method ) : We shall start from Left hand side ( L. H. S) and proceed till we get R. H. S. We will use trigonometric identities too.
3) Formulas we are going to use :
1 -cos²θ = sin²θ
tanθ = sinθ * secθ
4) Actual proof :
Firstly, We know that, sin²θ + cos²θ = 1 , So, 1 - cos²θ = sin²θ
Therefore, We proved the identity (1-cos² θ ) sec² θ = tan² θ .
Hope it helps!
Similar questions