Math, asked by Anonymous, 3 months ago

Questions :
1. Find the Square root of 1936 by prime factorization method.

2. Find the Square root of 4356 by prime factorization method.

3. Express (23)^2 as the Sum of two consecutive integers.

Answers

Answered by SachinGupta01
2

Solution - 1

 \sf \: First  \: of  \: all  \: We  \: have \:  to  \: find  \: Prime \:  factors \: of \: 1936.

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:1936\:\:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:968\:\:\:}} \\\underline{\sf{2}}&\underline{\sf{\:\:484\: \:\:}}\\{\underline{\sf{2}}}&{\underline{\sf{\:\:242\:\:\:}}} \\{\underline{\sf{11}}}&{\underline{\sf{\:\:121\:\:\:}}} \\ {\underline{\sf{11}}}&{\underline{\sf{\:\:11\:\:\:}}} \\ \underline{\sf{}}&{\sf{\:\:1\:\:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

 \sf \: Now  \: 1936 \:  =  \: { \sf \: \underline{2 \:  \times  \: 2} \:  \times  \:  \underline {2 \:  \times  \: 2}}   \: \times  \: { \underline  {11 \:  \times  \: 11}}

 \sf \:  \sqrt{1936}  \:  =  \:  \sqrt{2 \times 2 \times 2 \times 2  \times 11 \times 11}

  \sf  \therefore \: \sqrt{1936}  \:  =  \:  \sqrt{2  \times 2  \times 11 }

  \sf   \: \sqrt{1936}  \:  =  44

\underline{\boxed {\mathrm {\red{  \bigstar  \: Thus  \: 44, \:  is \:  the  \: Square  \: root \:  of  \: 1936 \: \bigstar} }}}

_____________________________________

Solution - 2

 \sf \: First  \: of  \: all  \: We  \: have \:  to  \: find  \: Prime \:  factors \: of \: 4356.

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:4356\:\:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:2178\:\:\:}} \\\underline{\sf{3}}&\underline{\sf{\:\:1089\: \:\:}}\\{\underline{\sf{3}}}&{\underline{\sf{\:\:363\:\:\:}}} \\{\underline{\sf{11}}}&{\underline{\sf{\:\:121\:\:\:}}} \\ {\underline{\sf{11}}}&{\underline{\sf{\:\:11\:\:\:}}} \\ \underline{\sf{}}&{\sf{\:\:1\:\:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

 \sf \: So,  \: 4356  \: =  \: 2  \times 2 \times 3 \times 3 \times 11 \times 11

 \sf \: Now,  \: we \:  will \:  take \:  one  \: factor \:  from  \: each \:  pair.

 \sf \:   \therefore \: \sqrt{4356}  \:  =  \:  \sqrt{ \underline{2 \times 2 }\times  \underline{3\times 3}\times \underline{11 \times 11}}

 \sf  \: \sqrt{4356}  \:  =  2 \times   3\times 11

 \sf  \: \sqrt{4356}  \:  = 66

\underline{\boxed {\mathrm {\red{  \bigstar  \: Thus  \: 66, \:  is \:  the  \: Square  \: root \:  of  \: 4356 \: \bigstar} }}}

_____________________________________

Solution - 3

 \sf \: (23)^{2}  \:  =  \:  \dfrac{(23)^{2} \:  + 1}{2}  \:  +  \: \dfrac{(23)^{2} \:  + 1}{2}

 \sf \:   =  \:  \dfrac{ \: 529 + 1}{2}  \:  +  \: \dfrac{ 529 \:  -  1}{2}

 \sf \:   =  \:  \dfrac{ \: 530}{2}  \:  +  \: \dfrac{ 528}{2}

\underline{\boxed {\mathrm {\red{  \bigstar \:  \: \sf  \:  = \: 256 \:  +  \: 264 \:  =  \: \bigstar } }}}

_____________________________________

Similar questions